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Introduction
The advent of microarrays  [1] allowed for efficient investigation of genetic matter, 
making it possible to improve both real-time polymerase chain reaction (RT-PCR) [2] 
and the Sanger methods  [3], allowing large scale studies of differential expressed 

Abstract 

Background: Microarrays can perform large scale studies of differential expressed 
gene (DEGs) and even single nucleotide polymorphisms (SNPs), thereby screening 
thousands of genes for single experiment simultaneously. However, DEGs and SNPs are 
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the statistical significance of the PEA analysis in terms of computed p value for each 
enriched pathways and limit the number of enriched pathways. This helps reduce the 
number of relevant biological pathways with respect to a non-specific list of genes.

Conclusion: The proposed method provides two-fold enhancements. Network analy-
sis reveals fewer DEGs, by selecting only relevant DEGs and the detected DEGs improve 
the enriched pathways’ statistical significance, rather than simply using a general list of 
genes.

Keywords: Biological pathways, Differential expressed genes, Pathway enrichment 
analysis, Statistical analysis, Data mining network, Network analysis, SNPs

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi 
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHODOLOGY

Agapito et al. BMC Bioinformatics          (2022) 23:393  
https://doi.org/10.1186/s12859‑022‑04936‑z

BMC Bioinformatics

*Correspondence:   
agapito@unicz.it

1 Department of Law, Economics 
and Sociology Sciences, 
University Magna Græcia, 
88100 Catanzaro, Italy
2 Data Analytics Research Center, 
University Magna Græcia, 
88100 Catanzaro, Italy
3 Department of Medical 
and Surgical Sciences, University 
Magna Græcia, 88100 Catanzaro, 
Italy

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04936-z&domain=pdf


Page 2 of 19Agapito et al. BMC Bioinformatics          (2022) 23:393 

genes (DEGs) and even single nucleotide polymorphisms (SNPs) [4].
In this manner, microarrays allow for screening of thousands of genes for a single 

experiment. Sanger-method, RT-PCR and microarrays rely on the extension of small 
segments of DNA through the polymerase biological process. All the cited methods 
will extend the genetic sequence of interest by adding on the complementary nucle-
otide from the template DNA strand. These methods allow a relative and accurate 
quantification of DNA and mRNA molecules with a sufficiently high reproducibility 
and low variability, and they are all well suited to study gene expression.

However, after the initial fervor, it became apparent that even the lists of DEGs 
or SNPs were mainly as enigmatic as the first nucleotide sequence of the genome. 
The main reason being that these lists of DEGs and SNPs are independent from the 
affected biological context. To overcome this limitation, several statistical software 
tools  [5–9] have been developed to help researchers analyze this enormous amount 
of microarray data to elucidate more valuable and suitable outcome for clinical activi-
ties. In addition, several data mining software tools  [10–12] are available that allow 
computation of multiple associations among SNPs. The produced results, from both 
categories, provide lists of DEGs or SNPs that are unlikely to be directly used in 
clinical activities, because results are still disconnected from the affected biological 
processes.

Pathway enrichment analysis (PEA) can facilitate the interpretation of such a list of 
DEGs or SNPs, linking both to the affected biological pathways and consequently to the 
underlying biological functions and processes. Although, PEA can help figure out the 
affected biological pathways starting from the DEGs or SNPs of interest, poor quality 
and relevance of the employed input can produce pathways that are not directly related 
to the condition under investigation. This is due to the fact that, a poor quality list of 
DEGs or SNPs can enrich a general pathway such as disease, rather than a more specific 
one like cellular responses to external stimuli, a well-known pathway involved in the pro-
gression of colorectal cancer, for example. These biases prevent researchers from figur-
ing out the proper affected biological pathways and the related functional interactions.

To improve the enrichment analysis results, it is necessary to determine the relevant 
DEGs that can both improve the p value (i.e. relevance) of the enriched pathways and 
reduce the number of enriched pathways, consequently improving their relevance with 
respect to the condition under investigation.

For these reasons, we developed a new DEG preprocessing method based on statisti-
cal and networks analysis. The proposed method identifies, from the whole DEGs list 
of interest, the most relevant genes with which to perform PEA. In short, the proposed 
method follows these steps: (i) DEG filtering relies on the Kruskal–Wallis test  [13] to 
select only DEGs with similar behaviours from the provided input list, splitting DEGs in 
up- and down-regulated gene groups. In addition, Kruskal–Wallis test returns results in 
the form of matrices. The provided matrices contain the p values for each group, that will 
be used to build gene interaction networks. In this model, the computed Kruskal–Wal-
lis p values are considered as a similarity measure among gene pairs [14, 15]. (ii) Next, 
the computed similarity matrices are converted into networks from which the essen-
tial DEGs are extracted. (iii) Finally, both essential DEGs groups are mapped separately 
on the human protein-protein interaction (PPI) network obtained from the Integrated 
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Interactions Database (IID) database  [16] to discover additional relevant genes to per-
form PEA analysis.

The rest of the paper is organized as follows. Section 2 describes the provenance of 
the downloaded gene expression data sets, the methods employed to obtain the list of 
DEGs, and the threshold used to select DEGs. Section  2.6 highlights and details the 
major phases of the DEG preprocessing methodology. Section 3 describes and discusses 
the preliminary results as a validation of our approach, highlighting the principal ben-
efits. Section 4 validates the enrichment results by manually exploring the literature and 
finally, Sect. 5 concludes the paper.

Methods
Data set

Microarray assays are extensively used in many omics data analyses for several rea-
sons. First microarrays analyse are cheaper than Next-Generation Sequencing (NGS), 
RNAseq. Second, extensive microarray studies are available in the literature and cover 
a variety of different phenotypes. Microarray data are curated, providing well-docu-
mented criteria, making it easy to verify the accuracy and reproducibility of the research. 
In addition, microarray data sets can be used as benchmarks to validate data analysis 
workflows. Hence, we have chosen to use GEO microarray data sets to perform the pre-
liminary tests of our methodology.

We downloaded from the Gene Expression Omnibus (GEO) database [17] the follow-
ing data sets:

• GSE1297 [18] provides microarray correlation analysis of hippocampal gene expres-
sion deemed to be responsible for incipient Alzheimer’s disease (AD). The data set 
contains data from approximately 31 subjects: 9 controls, and 22 cases affected by 
AD. Expression profiles were collected using Affymetrix Human Genome U133A 
Array. For further details see https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= 
GSE12 97.

• GSE5281 [19–22] contains gene expression profiling data collected from brain sam-
ples. The Affymetrix Human Genome U133 Plus 2.0 Array was used to yield the 
expression profiles. The data set is comprised of data from about 161 subjects: 100 
Alzheimer subjects, and 61 controls. Both samples groups are related to six brain 
regions that are histopathologically or metabolically relevant to AD and aging. For 
further details see https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE52 81.

• GSE16759  [23] contains a combination of profiled messenger RNA (mRNA) and 
microRNA (miRNA) expressions to define the role of miRNAs in AD. Expression 
profiles were obtained using Affymetrix Human Genome U133 Plus Array and the 
USC/XJZ Human 0.9 K miRNA-940-v1.0. The overall design of the GSE16759 data 
set is parietal lobe tissue from 4 Alzheimer’s subjects and 4 age-matched controls. 
For further details see https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE16 
759.

• GSE9476 [24] describes the use of microarrays to identify previously unrecognized 
expression changes that occur only in acute myeloid leukemia (AML) blasts. Expres-
sion profiles were obtained using Affymetrix Human Genome U133A Array. The 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1297
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1297
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5281
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16759
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16759
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overall design includes gene expression profiles between normal hematopoietic cells 
from 38 healthy controls, and leukemic blasts from 26 AML patients. Eighteen nor-
mal hematopoietic samples included CD34+ selected cells, 10 unselected bone mar-
rows cells, and 10 unselected peripheral blood cells. For further details see https:// 
www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE94 76.

• GSE14924  [25] attempts to prove that T cells from patients with chronic lympho-
cytic leukemia (CLL) show differentially regulated genes compared with healthy T 
cells. Expression profiles were obtained using Affymetrix Human Genome U133 Plus 
2.0 Array. The overall design includes gene expression profiles of four groups of sam-
ples: 10 AML CD4, 10 AML CD8, 10 Healthy CD4, and 11 Healthy CD8. AML sam-
ples were chosen to represent the range of prognostic groups and patient outcomes. 
For further details see https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE14 
924.

• GSE24739  [26, 27] encompasses gene expressions of normal and chronic myelog-
enous leukemia. The differentially expressed genes were grouped according to their 
reported functions, and correlations were sought with biological differences previ-
ously observed between the same groups. Expression profiles were obtained using 
Affymetrix Human Genome U133 Plus 2.0 Array. The overall design includes gene 
expression profiles of 8 AML samples and 4 normal samples. For further details see 
https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE24 739.

The main features of the six downloaded data sets are listed in Table 1.
Figures 1 and 2 show the Uniform Manifold Approximation and Projection (UMAP) 

and Volcano plot related to the downloaded data sets.

Detection of DEGs with GEO2R

To identify the differential expressed genes between cases and controls, we used GEO2R 
(https:// www. ncbi. nlm. nih. gov/ geo/ geo2r/). GEO2R is an interactive online analysis 
tool used to detect DEGs enclosed in expression profile array data sets. GEO2R allows 
classification of subjects in several groups, using the define groups command. The panel 
options available in GEO2R, allow straightforward analysis customization. The option 
panel enables users to select the statistical corrector, the data normalization method, 
and the cut-off value to filter out the genes not holding the defined cut-off. In addition, 
GEO2R exploits the limma package to perform inter- and intra-sample normalization. 
To perform DEG analysis, we selected the false discovery rate (FDR) p value adjustment 

Table 1 A summarization of the main features of the downloaded data sets

Disease Cases Controls

GSE1297 Alzheimer’s disease 22 9

GSE5281 Alzheimer’s disease 100 61

GSE16759 Alzheimer’s disease 4 4

GSE9476 Acute myeloid leukemia 26 38

GSE14924 Acute myeloid leukemia 20 21

GSE24739 Acute myeloid leukemia 8 4

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9476
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9476
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14924
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14924
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24739
https://www.ncbi.nlm.nih.gov/geo/geo2r/
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for multiple testing, and the log data transformation method to normalize the results. 
Finally, we selected and downloaded the following results: adjusted p value, p value, 
logFC, gene symbol, and title.

Selection of DEGs

A cohort of DEGs was obtained by filtering out all the genes that do not meet the 
adjusted threshold criteria (p value ≤ 0.005 and |(logFC)| ≥ 1.5) . The fold change loga-
rithm (logFC) is a metric to assess the change in the ratio between the expression levels 
of two genes. Hence, the genes meeting both criteria were designated as DEGs. DEGs 
associated to negative logFC values are classified as down-regulated DEGs, otherwise 

Fig. 1 The UMAP of the six downloaded data sets

Fig. 2 The Volcano Plot of the six downloaded data sets
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they were classified as up-regulated DEGs. Next, the DEGs are investigate using the 
Kruskal–Wallis test  [13], to differentiate genes with similar behaviour. The Kruskal–
Wallis test evaluates the similarity between pairs of genes, assessing if two genes are 
correlated  [14, 15]. In general, Kruskal–Wallis test is applied to test the null hypothe-
sis which states that k number of samples have been starved from the same population 
or an identical population with the same or identical median. In this manner, accept-
ing the null hypothesis, e.g., a p value greater than 0.005, allow coupling of genes with 
the same median among them enabling identification of genes with the same statistical 
behaviours.

Pathway enrichment analysis

To identify the connections among DEGs with the affected biological functions, we can 
use PEA, making it possible to take advantage of the pathway database’s information 
to discover connections with biological mechanisms. This approach helps researchers 
interpret gene lists, or other biological entity lists of interest, disconnected from the bio-
logical context, facilitating and validating their findings  [28, 29]. To perform PEA, we 
used the BioPAX-Parser (BiP) software tool [30], an automatic and graphics-based tool 
to achieve PEA by using pathways data encoded in BioPAX format. BioPAX-Parser is 
fully developed using Java 8, and helps perform PEA by merely loading a list of proteins/
genes of interest. Enrichment in BiP implements the Hypergeometric test, False Discov-
ery Rate (FDR), and Bonferroni multiple-test statistical correctors.

Pathway data

Pathway data were collected from the Reactome database  [31] (version 79) with BiP. 
Reactome is an open source, open access, manually curated, and peer-reviewed database 
of human pathways, biological processes and biochemical reactions. Reactome is the 
result of the joint efforts of several international research institutes. In the current ver-
sion, Reactome contains the whole known pathways coming from 22 different organisms 
including the Homo sapiens. Reactome includes over 2, 000 pathways and about 10, 000 
annotated proteins for the Homo sapiens. Reactome allows to browse pathways through 
the graphical web interface, as well as download the data in different formats compris-
ing Systems biology markup language (SBML) Level 2, BioPAX Level 2 and Level 3 and 
other graphical formats for local analysis.

The DEGs preprocessing method

The proposed statistical network pre-processing methodology automatically determines 
significant DEGs to use in PEA analysis in order to obtain more relevant biological path-
ways with respect to the condition under investigation. The proposed method consists of 
the following steps: 

1. Similarity matrix computation. Similarity matrices As a preliminary step, the input 
DEG list is filtered by using the criteria introduced in Sect. 2.3. The remaining, DEGs 
are automatically grouped into up- and down- regulated genes, to yield the related 
up- and down- regulated similarity matrices’ UpSM and DownSM. The Kruskal–
Wallis test [13] is used to compute both the UpSM and DownSM matrices by using 
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the grouped DEGs. Kruskal–Wallis test is a non-parametric version of a paramet-
ric one-way ANOVA with the data substituted by their scores [32]. It works on two 
or more independent populations whose dimensions, e.g., the number of elements 
in each population, can be different. Equation 1 shows the formal definition of the 
Kruskal–Wallis test. 

 In Eq. 1, N is the total number of elements, g is the groups number, ni is the num-
ber of elements in group i, sij is the observation of element j from group i, s̄i· is the 
average similarity of all elements in group i, and s̄ is the average of all the sij similari-
ties. A generic SM’s cell (i, j) contains the value of the similarity obtained comparing 
two genes by means of the Kruskal–Wallis test. The Kruskal–Wallis test assesses if 
two genes are correlated. In this manner, the Kruskal–Wallis test compares the genes 
with the aim to elucidate statistically similar behaviours among them. Other mod-
els [33, 34] used the Wilcoxon test [35, 36] to compute the SM. To compute the SM, 
the Wilcoxon test requires that the number of elements in each populations, e.g., the 
assessed expression levels n for each gene is n ≥ 20 . Conversely, the Kruskal–Wallis 
test works on 2 or more independent populations which may have different number 
of elements. A lower score (i.e, p value) implies that two genes are different accord-
ing to the logFC. Otherwise, a higher score implies that genes show a similarity. The 
threshold was set to 0.005. Hence, the SM’s will contain only p values ≥ 0.005 , 0 
otherwise.

2. Converting similarity matrix to network The UpSM and DownSM matrices are con-
verted to networks Nup and Ndown , where nodes are the genes and the edges connect 
them when the similarity value among two genes in the (i-th,  j-th) cell exceeds the 
similarity threshold (e.g., p values ≥ 0.005 ). The Closeness Centrality (CC) measure 
determines from the Nup and Ndown networks the genes to include in the respec-
tive Essential Gene sets EGup and EGdown . The CC is tightly related to the notion of 
distance between nodes and indicates how close a node is to all other nodes in the 
network. It is calculated as the average of the shortest path length from a node to 
every other node in the network. Only the nodes with CC values less than or equal to 
the computed average CC (e.g., CC(ni) ≤ CCavg (N ) ) were included in the respective 
EGup or EGdown gene sets.

3. Improving genes relevance The essential genes in both EG sets identified in the pre-
vious step are mapped onto the protein-protein interaction (PPI) network obtained 
from the IID [16] database. All DEGs that do not exist in the iidNetwork i.e., Niid are 
filtered out. For each mapped gene from the respective gene sets, EGup and EGdown , 
we computed from the Niid , the neighborhood with a radius equal to 1, yielding 
respectively the up-regulated gene community GCup , and the down-regulated gene 
community GCdown . In this way, it is possible to identify similar genes, and similar 
genes tend to interact among them to complete biological tasks. Finally, from both 
neighborhoods, all the nodes with a Bottleneck value greater than the average Bottle-
neck value, were selected to compute PEA.

(1)K = (N − 1)

g
i=1

ni(s̄i· − s̄)2

g
i=1

ni
j=1

(sij − s̄)2
, s̄i· =

ni
j=1

sij

ni
; s̄ =

1

2
(N + 1)



Page 8 of 19Agapito et al. BMC Bioinformatics          (2022) 23:393 

Figure 3 shows the main steps of the proposed method.

Results
The six data sets obtained from GEO and analyzed through the GEO2R framework 
were used as benchmark data. Table 2 contains the information the preprocessing of the 
original data sets of Table 1 referring to acute myeloid leukemia and Alzheimer’s disease 

Fig. 3 The main steps of the proposed method

Table 2 Tot#Genes refers to the total number of filtered differential expressed gene from GEO2R tool, 
after removing duplicate genes

#DoRegG is the number of down regulated genes obtained employing the proposed methodology. #UpRegG indicates the 
number of up regulated genes obtained employing the proposed methodology. Finally, #G is the total number of extracted 
genes for each data set, holding all criteria

Data sets name Tot#Genes #DoRegG #UpRegG #G

GSE1297 22,283 6 24 30

GSE5281 54,675 185 122 307

GSE16759 54,675 2 5 7

GSE9476 22,283 350 379 729

GSE14924 22,283 124 440 564

GSE24739 54,613 105 69 174
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Analysis of all data sets began by filtering out genes using the threshold values defined 
Sect. 2.3. Next, the genes holding the threshold criteria were split into up and down-reg-
ulated gene sets, EGup and EGdown . It is worth noting that up- and down-regulated gene 
sets do not overlap, e.g., {EGup ∩ EGdown = ∅} . Third, genes in both gene sets were ana-
lyzed using the Kruskal–Wallis test to identify genes with the same behavior to compute 
similarity matrices, UpSM and DownSM. The UpSM and DownSM matrices were con-
verted into networks Nup and Ndown , and CC is used to determine the genes to include in 
the respective Essential Gene sets, EGup and EGdown . Only the nodes with CC values less 
or equal to the computed average CC (e.g., CC(ni) ≤ CCavg (N ) ) were included in the 
respective EGup or EGdown gene set.

All six data sets contain duplicate genes that must be removedso they do not com-
promise the analysis. In many investigations, researchers manually remove the duplicate 
genes through some customized scripts. This long, tedious, and error-prone process 
introduce biases, and potentially entangle the PEA results. To overcome this limitation, 
the proposed preprocessing methodology automatically removes the duplicate genes, 
and retaining unique genes for further analysis (see Table 2Tot#Genes columns).

To improve both relevance and specificity of the selected genes within both the EGup 
and EGdown regulated gene sets, each gene was matched to the IID network obtained 
from, filtering out all the unmatched genes. After the mapping on the IID, we computed 
the neighborhoods with distance 1. In this way, the neighborhoods allow identification 
of new relevant genes exploiting topological information, as reported in Table 3. In order 
to limit the number of potential genes to use in PEA, all the DEGs holding the follow-
ing threshold: Bottleneck(gi) ≥ AvgBottleneck were selected. The number of relevant 
selected DEGs is summarized in Table 4.

The descriptive statistics of the six data sets are summarized in Figs. 4 and 5 the num-
ber of relevant selected DEGs are listed in Table 4.

It is important to mention that the proposed methods limit the number of DEGs in the 
PEA to elucidate more relevant biological pathways to the condition under investigation. 
Tables 6,  7, 10 and 11 report the respective enriched pathways for each gene group.

Tables  6,  7,  10 and 11 report the enriched pathways for each genes’ group.
It is worth noting that the gene groups classification e.g., down- and up- regulated 

gene groups, provides a two advantages. First, it limits the number of possible enriched 
pathways by employing fewer more specific genes. Second, it highlights which genes 

Table 3 #UDEGs refers to the total number of filtered out up-regulated DEGs, #DRegG is the number of 
down-regulated genes in each data set

#RUDEGsExt indicates the number of up‑regulated genes for each gene that successfully mapped onto the IID network. 
#RDDEGsExt represents the down regulated genes for each gene that successfully mapped onto the IID network. Finally, 
%SelDDEGs indicates the percentage of detected relevant genes with respect to the total number of available genes in each 
data set

Dataset #UDEGs #DDEGs #RUDEGsExt #RDDEGsExt %SelUDEGs %SelDDEGs

GSE1297 24 6 2119 1047 0.1077 0.0469

GSE9476 379 350 10,132 11,908 1.7008 0.5343

GSE24739 69 105 4785 5939 0.1263 0.1087

GSE5281 122 185 9113 7013 0.2231 0.1282

GSE16759 5 2 1091 64 0.0091 0.0011

GSE14924 440 124 11,429 4473 0.80473 0.0818
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affect the underlining biological functions. This aspect is more evident when analysing 
the enrichment results in Tables  5 (AML) and  9 (AD) from the ungrouped DEGs. In 
fact, Table 5 contains the same enriched pathways (in a different order) with respect to 
Tables 6 and 7, and Table 9 contains the same enriched pathways (in a different order) 
with respect to Tables  10 and 11, further complicating determination of which DEGs 
underlie biological mechanisms and functions.

Analysing the data contained in Tables 6, 7,  10, and  11, it should be noted that using 
of down- and up-regulated gene groups provides a better indication of which group of 
genes are affecting the pathways responsible for the current phenotype with respect to 
all unclassified genes.

Comparing the enrichment results obtained using the DEGs without preprocess-
ing and the enrichment results obtained by employing the computed essential DEGs, 
it supports the proposed approach’s effectiveness in identifying crucial DEGs related to 
the phenotype under investigation. The effectiveness of the proposed method in select-
ing proper DEGs is indicated by the obtained from the enrichment’s statistical func-
tion, e.g., Hyper-geometric function p values for each enriched pathway. In fact, higher 
p values refer to more specific biological pathways for the condition under investiga-
tion. For example, in Table 6, the first enriched pathway is Signaling by Interleukins, a 

Fig. 4 The figure shows the descriptive statistics of six data sets about the Top Gene from GEO2R, Up DEGs, 
Down DEGs, Relevant Up DEGS, Relevant Down DEGS

Table 4 In the table, #RUDEGsExt indicates the number of up regulated genes for each gene for it 
which was possible to obtain a mapping and subsequent extension in IID network

#RDDEGsExt represents the down regulated genes for each gene for which it was possible to obtain a mapping and 
subsequent extension in IID network. BSDDEGs indicates the percentage of detected relevant gene with respect to the total 
number of available genes in each data set

Dataset name #RUDEGsExt #RDDEGsExt BSUDEGs BSDDEGs %BSUDEGs %BSDDEGs

GSE1297 2119 1047 37 11 0.0175 0.0105

GSE9476 10,132 11,908 331 360 0.0327 0.0302

GSE24739 4785 5939 77 115 0.0161 0.0194

GSE5281 9113 7013 118 197 0.0129 0.0281

GSE16759 1091 64 9 2 0.0082 0.0313

GSE14924 11,429 4473 368 133 0.0322 0.0297
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very well-known pathway involved in the generation of AML [37]. In Table 7, the first 
enriched pathway is Hemostasis, a well-known pathway involved in the development 
and progression of AML [38]. Whereas in Table 8, all ten enriched pathways are generic 
pathways that do not provide any additional information to the researchers about the 
DEGs and their involvement in AML. This shows the DEGs role in the PEA. In this 
enrichment, the Signaling by Interleukins pathway is shifted to the 50th position in the 
enrichment ranking, while the Hemostasis pathway has been moved to 30th position. 
These results highlight the importance of the chosen DEGs for the PEA. Many DEGs 
provides many general enriched pathways, challenging researchers to obtain new clues 
about the relationship between DEGs and biological functions. Finally, it is worthy not-
ing that the use of gene groups along with the identification of essential genes, makes it 
straightforward to understand which genes are responsible for affecting the underlying 

Fig. 5 The figure shows the descriptive statistics of six data sets about Selection Up Genes, Selection Down 
Genes, Selection Up Through Bottle, Selection Up Through Bottleneck Seucted Up Genes Wrt GEO2R, 
Seucted Down Genes Wrt GEO2R

Table 5 The first 10 enriched pathways using the whole list of relevant DEGs obtained from the 
AML GSE24739 data set without using DEG group classification

The FDRC indicates the corrected p value using FDR statistical corrector. The BonfC represents the corrected p value using 
Bonferroni statistical corrector. Finally, the last three columns contain the |lg2(·)| of each p value, for ease comparison

PathwayName Pvalue FDRC BonfC |lg2(Pvalue)| |lg2(FDR(Pvalue)| |lg2Bonf (Pvalue)|

(1) Signaling pathways 5.29E−13 4.87E−10 4.87E−10 30.94 30.94 30.94

(2) Hemostasis 5.36E−13 2.47E−10 4.93E−10 31.92 30.92 30.92

(3) Developmental biology 9.86E−10 3.02E−07 9.07E−07 21.66 20.07 20.07

(4) Signaling by interleukins 1.37E−09 3.15E−07 1.26E−06 21.60 19.60 19.60

(5) Cell surface interactions at 
the vascular wall

1.94E−09 3.56E−07 1.78E−06 21.42 19.10 19.10

(6) Cytokine signaling in 
immune system

5.40E−09 8.28E−07 4.97E−06 20.20 17.62 17.62

(7) Muscle contraction 9.65E−09 1.27E−06 8.88E−06 19.59 16.78 16.78

(8) Signaling by GPCR 1.83E−08 2.10E−06 1.68E−05 18.86 15.86 15.86

(9) GPCR downstream signal-
ling

2.09E−08 2.14E−06 1.93E−05 18.83 15.66 15.66

(10) Cardiac conduction 2.12E−08 1.95E−06 1.95E−05 18.97 15.65 15.65
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biological functions, by linking DEGs with more specific pathways. More information 
about the other investigated GSE data sets are reported in Additional file 1.

Discussion
In order to place long lists of differential genes into the context of biological processes 
and pathways, enrichment pathway analysis is widely used. In this work we proposed 
a new statistical network pre-processing method to improve the relevance and signifi-
cance of the DEGs or SNPs of interest when performing PEA attempting to incorporate 
pathway topology information into the analysis.

Although PEA is an essential part of DEG data analysis, the absence of suitable stand-
ards force validation of enrichment results. The following is a literature review for the 
results from our new statistical network pre-processing methodology.

Analysis of the enriched pathways using the up-regulated relevant DEGs obtained 
from the AML data set with identifier GSE24739, indicates that the Signaling by Inter-
leukins pathway can promote the generation of AML as reported in [37]. Hemostasis is 
a well-known pathway involved in the development and progression of AML [38]. Since 
both up- and down-regulated gene sets are involved in the Hemostasis pathway, all the 
enriched pathways capture this information. On the other hand, analysis that does not 
incorporate gene groups, makes it difficult to understand which group of genes are 
affecting the Hemostasis pathway. The third enriched pathway in Table  5 which does 
not use the gene, groups is the Developmental Biology pathway and its relationship with 
AML as described in [39]. However, the third enriched pathway in Table 7 is the Muscle 
contraction pathway, whose role in AML is explained in [40].

The role of the signaling pathways family in the progression and developing of AML 
is well-known in the literature. In fact, the enriched pathways in Table 6 highlight this 
peculiarity of enriching the following signalling pathways: Cytokine Signaling in Immune 
system[41], POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation [42], 
Signaling by EGFR  [43], and Signaling Pathways  [44]. The last enriched pathway in 
Table  6 is Transcriptional regulation of pluripotent stem cells whose involvement in 
AML is described in [45].

Analysis of the enriched pathways in Table 7 reveals the link between the Metabo-
lism of proteins and AML as described in [46]. The role of Amino acid and derivative 
metabolism in developing of AML is discussed in  [47]. The relation between AML 
and Cell Cycle and Cell Cycle Mitotic are described in [48]. In [49] the role Mitotic 
G1 phase and G1/S transition pathway in AML is introduced. In  [50] it is clarified 
that AML can cause Cardiac conduction abnormalities in the elderly. Finally, the 
connection between the Nervous system development pathway and AML is docu-
mented in [51].

As proof of concept, Table  8 shows the first 10 enriched obtained using all the 
genes identifiers within the AML GSE24739 data set. Only one of the enriched path-
ways seems to have a connection with AML, the Cellular Senescence pathway [52]. 
To the best of our knowledge, we were unable to find any connection between the 
remaining nine enriched pathways in Table 8 and AML. This shows that using many 
less specific DEGs provides more enriched pathways but they are disconnected from 
the biological context of reference.
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Thus, it is worth noting that using the improved list of genes provides more relevant 
enriched pathways as demonstrated in Tables 5, 6, and 7, where all the enriched path-
ways have a connection with AML. Indeed, using a generic list of genes, the ratio between 
enriched pathways with the biological context of reference, e.g., AML, drops to 10%.

The connection among the first three enriched pathways in Table  9 and Alz-
heimer’s are the following. The association between the Post-translational pro-
tein modification pathway and AD is reported in  [53]. The relationship between 
the Metabolism of proteins pathway and AD is provided in  [54]. While in  [55], the 
authors describe the role of the Neurophilin interactions with VEGF and VEGFR 
pathway and AD.

Table 6 The first 10 enriched pathways using the list of relevant down regulated DEGs obtained 
from the AML GSE24739 data set

The FDRC indicates the corrected p value using FDR statistical corrector. The BonfC represents the corrected p value using 
Bonferroni statistical corrector. Finally, the last three columns contain the |lg2(·)| of each p value, for ease comparison

PathwayName Pvalue FDRC BonfC |lg2(Pvalue)| |lg2(FDR(Pvalue)| |lg2Bonf (Pvalue)|

(1) Signaling by interleukins 8.61E−15 8.21E−12 8.21E−12 46.72 36.83 36.83

(2) Adaptive immune system 1.66E−14 7.92E−12 1.58E−11 45.78 36.88 35.88

(3) Signaling pathways 3.88E−14 1.23E−11 3.70E−11 44.55 36.24 34.65

(4) Cell surface interactions at 
the vascular wall

1.44E−13 3.44E−11 1.38E−10 42.65 34.76 32.76

(5) Cytokine signaling in 
immune system

1.48E−13 2.81E−11 1.41E−10 42.62 35.05 32.73

(6) POU5F1 (OCT4), SOX2, 
NANOG activate genes 
related to proliferation

4.47E−13 7.11E−11 4.27E−10 41.02 33.71 31.13

(7) Signaling by EGFR 4.47E−13 6.10E−11 4.27E−10 41.02 33.93 31.13

(8) Developmental biology 5.86E−13 6.99E−11 5.59E−10 40.63 33.74 30.74

(9) Hemostasis 5.88E−13 6.24E−11 5.61E−10 40.63 33.90 30.73

(10) Transcriptional regula-
tion of pluripotent stem cells

6.67E−13 6.36E−11 6.36E−10 40.45 33.87 30.55

Table 7 The first 10 enriched pathways using the list of relevant up regulated DEGs obtained from 
the AML GSE24739 data set

The FDRC indicates the corrected p value using FDR statistical corrector. The BonfC represents the corrected p value using 
Bonferroni statistical corrector. Finally, the last three columns contain the |lg2(·)| of each p value, for ease comparison

PathwayName Pvalue FDRC BonfC |lg2(Pvalue)| |lg2(FDR(Pvalue)| |lg2Bonf (Pvalue)|

(1) Hemostasis 1.82E−11 1.60E−08 1.60E−08 35.68 25.89 25.89

(2) Signaling pathways 4.32E−10 1.91E−07 3.81E−07 31.11 22.32 21.32

(3) Metabolism of proteins 4.09E−08 1.20E−05 3.61E−05 24.54 16.34 14.76

(4) Muscle contraction 4.13E−08 9.11E−06 3.64E−05 24.53 16.74 14.74

(5) Cell cycle, mitotic 1.18E−07 2.09E−05 1.04E−04 23.01 15.55 13.23

(6) Mitotic G1 phase and 
G1/S transition

1.18E−07 1.74E−05 1.04E−04 23.01 15.81 13.23

(7) Cardiac conduction 1.55E−07 1.95E−05 1.36E−04 22.62 15.65 12.84

(8) Cell Cycle 1.78E−07 1.96E−05 1.57E−04 22.42 15.64 12.64

(9) Nervous system develop-
ment

2.29E−07 2.24E−05 2.02E−04 22.06 15.45 12.28

(10) Amino acid and deriva-
tive metabolism

2.88E−07 2.54E−05 2.54E−04 21.73 15.26 11.94
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Searching the scientific literature, we find the following connection between the 
first three enriched pathways in Table 10 and AD. The role of the Synthesis of 5-eico-
satetraenoic acids and Synthesis of Leukotrienes (LT) and Eoxins (EX) pathways with 
the AD is reported in [56] and [57], respectively. The implication of HIV Transcrip-
tion Initiation pathway in AD is explained in  [58].

Table 8 The first 10 enriched pathways using all genes obtained from GEO2R enclosed in the AML 
GSE24739 data set, without using the proposed pre-processing method

.The FDRC indicates the corrected p value using FDR statistical corrector. The BonfC represents the corrected p value using 
Bonferroni statistical corrector. Finally, the last three columns contain the |lg2(·)| of each p value, for ease comparison

PathwayName Pvalue FDRC BonfC |lg2(Pvalue)| |lg2(FDR(Pvalue)| |lg2Bonf (Pvalue)|

(1) Signaling pathways 7.67E−303 3.01E−301 1.92E−299 1003.606 998.313 992.313

(2) Generic transcription 
pathway

7.67E−303 3.01E−301 1.92E−299 1003.606 998.313 992.313

(3) Gene expression 
(transcription)

7.67E−303 3.01E−301 1.92E−299 1003.606 998.313 992.313

(4) SLC-mediated trans-
membrane transport

7.67E−303 3.01E−301 1.92E−299 1003.606 998.313 992.313

(5) Cellular responses to 
stimuli

7.67E−303 3.01E−301 1.92E−299 1003.606 998.313 992.313

(6) Cellular responses to 
stress

7.67E−303 3.01E−301 1.92E−299 1003.606 998.313 992.313

(7) Cellular senescence 7.67E−303 3.01E−301 1.92E−299 1003.606 998.313 992.313

(8) DNA damage-
telomere stress induced 
senescence

7.67E−303 3.01E−301 1.92E−299 1003.606 998.313 992.313

(9) Carbohydrate 
metabolism

7.67E−303 3.01E−301 1.92E−299 1003.606 998.313 992.313

(10) Metabolism 7.67E−303 3.01E−301 1.92E−299 1003.606 998.313 992.313

Table 9 The first 10 enriched pathways using the whole list of relevant DEGs obtained from the 
Alzheimer GSE16759 data set without using genes’ group classification

The FDRC indicates the corrected p value using FDR statistical corrector. The BonfC represents the corrected p value using 
Bonferroni statistical corrector. Finally, the last three columns contain the |lg2(·)| of each p value, for ease comparison

PathwayName Pvalue FDRC BonfC |lg2(Pvalue)| |lg2(FDR(Pvalue)| |lg2Bonf (Pvalue)|

(1) Post-translational protein 
modification

8.20E-05 0.0390 0.0390 4.68 4.68 4.68

(2) Metabolism of proteins 1.67E−04 0.0396 0.0793 4.66 3.66 3.66

(3) Neurophilin interactions with 
VEGF and VEGFR

7.62E−04 0.1208 0.3625 3.05 1.46 1.46

(4) Disease 0.0013 0.1574 0.6299 2.67 0.67 0.67

(5) VEGF binds to VEGFR leading to 
receptor dimerization

0.0028 0.2679 1 1.90 0.00 0.00

(6) VEGF ligand–receptor interac-
tions

0.0028 0.2233 1 2.16 0.00 0.00

(7) Signaling by VEGF 0.0029 0.1976 1 2.34 0.00 0.00

(8) Synthesis of 5-eicosatetraenoic 
acids

0.0047 0.2827 1 1.82 0.00 0.00

(9) Signaling by receptor tyrosine 
Kinases

0.0047 0.2534 1 1.98 0.00 0.00

(10) Synthesis of leukotrienes (LT) 
and Eoxins (EX)

0.0049 0.2352 1 2.09 0.00 0.00
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Table  11 lists the enriched pathways using the up-regulated relevant DEGs 
obtained from the GSE16759 data set. In [59], the authors describe the implication 
of the PERK regulates gene expression pathway with AD. In [60] the authors clarify 

Table 10 The 5 enriched pathways using the list of relevant down regulated DEGs obtained from 
the Alzheimer GSE16759 data set

The FDRC indicates the corrected p value using FDR statistical corrector. The BonfC represents the corrected p value using 
Bonferroni statistical corrector. Finally, the last three columns contain the |lg2(·)| of each p value, for ease comparison

PathwayName Pvalue FDRC BonfC |lg2(Pvalue)| |lg2(FDR(Pvalue)| |lg2Bonf (Pvalue)|

1) Synthesis of 5-eicosatetraenoic 
acids

0.002 0.013 0.735 6.23 0.45 0.45

2) Synthesis of leukotrienes (LT) and 
eoxins (EX)

0.002 0.014 0.764 6.20 0.39 0.39

3) HIV transcription initiation 0.003 0.026 1.000 5.28 0.00 0.00

4) RNA Polymerase II HIV promoter 
escape

0.003 0.025 1.000 5.30 0.00 0.00

5) Transcription of the HIV genome 0.005 0.037 1.000 4.76 0.00 0.00

Table 11 The 6 enriched pathways using the list of relevant up regulated DEGs obtained from the 
Alzheimer GSE16759 data set

The FDRC indicates the corrected p value using FDR statistical corrector. The BonfC represents the corrected p value using 
Bonferroni statistical corrector. Finally, the last three columns contain the |lg2(·)| of each p value, for ease comparison

PathwayName Pvalue FDRC BonfC |lg2(Pvalue)| |lg2(FDR(Pvalue)| |lg2Bonf (Pvalue)|

1) PERK regulates gene expression 4.81E−05 0.02 0.02 14.34 5.42 5.42

2) Signaling pathways 1.10E−04 0.03 0.05 13.15 5.23 4.23

3) Unfolded protein response (UPR) 3.33E−04 0.05 0.16 11.55 4.21 2.63

4) Neurophilin interactions with 
VEGF and VEGFR

0.0011 0.14 0.56 9.77 2.85 0.85

5) ATF6 (ATF6-alpha) activates chap-
erone genes

0.0028 0.28 1.00 8.45 1.85 0.00

6) ATF6 (ATF6-alpha) activates 
chaperones

0.0034 0.28 1.00 8.19 1.85 0.00

Fig. 6 The first 10 enriched pathways using the whole list of relevant DEGs, up-regulated DEGs, and down 
regulated DEGs obtained from the AML GSE24739. The blue mark represents the log2(pvalues), the red mark 
represents log2(FDRpvalues), and the green mark represents log2(Bonferronipvalues)
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the implication of Signaling Pathways in the development of many human diseases 
including AD disease. The authors in  [61] characterize the association between 
unfolded protein response (UPR) with onset of familial Alzheimer’s disease (Fig. 5).

Comparing the enriched pathways in Figs. 6 and 7, further highlights the benefits 
of the proposed approach, revealing more specific pathways affecting the biological 
functions and mechanisms.

Finally, we performed PEA using the grouped and ungrouped DEG sets to assess 
the effectiveness of the proposed DGE preprocessing and selection method. Ana-
lyzing the obtained pathway enrichment results using both data sets highlight that 
DEGs critically impact PEA, since employing an ungrouped DEG set can lead to 
poor enrichment results. Also, the first ranked enriched pathway using grouped 
DEGs is related to the condition under investigation, which may induce new biologi-
cal discoveries and simplify research.

Conclusions
In this work, we proposed a new statistical network pre-processing approach to identify 
relevant DEGs that can improve PEA results, helping researchers identify the affected 
underlying biological functions and processes. The proposed method provides a two-
fold improvement. First, network analysis yields fewer DEGs, choosing only relevant 
DEGs that directly involved with the condition under investigation. Second, the detected 
DEGs improve the enriched pathways’ statistical significance over a more general list of 
genes. As a drawback, the number of enriched pathways is still too large; thus, future 
research should be aimed at developing a method to further reduce the number of 
enriched pathways.
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Fig. 7 The first 10 enriched pathways using the whole list of relevant DEGs, up-regulated DEGs, 
down-regulated DEGs obtained from the AD GSE16759. The blue mark represents the log2(pvalues), the red 
mark represents log2(FDRpvalues), and the green mark represents log2(Bonferronipvalues)
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