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Abstract 

Background: The widespread usage of Cap Analysis of Gene Expression (CAGE) has 
led to numerous breakthroughs in understanding the transcription mechanisms. 
Recent evidence in the literature, however, suggests that CAGE suffers from tran-
scriptional and technical noise. Regardless of the sample quality, there is a significant 
number of CAGE peaks that are not associated with transcription initiation events. This 
type of signal is typically attributed to technical noise and more frequently to random 
five-prime capping or transcription bioproducts. Thus, the need for computational 
methods emerges, that can accurately increase the signal-to-noise ratio in CAGE data, 
resulting in error-free transcription start site (TSS) annotation and quantification of 
regulatory region usage. In this study, we present DeepTSS, a novel computational 
method for processing CAGE samples, that combines genomic signal processing (GSP), 
structural DNA features, evolutionary conservation evidence and raw DNA sequence 
with Deep Learning (DL) to provide single-nucleotide TSS predictions with unprec-
edented levels of performance.

Results: To evaluate DeepTSS, we utilized experimental data, protein-coding gene 
annotations and computationally-derived genome segmentations by chromatin states. 
DeepTSS was found to outperform existing algorithms on all benchmarks, achieving 
98% precision and 96% sensitivity (accuracy 95.4%) on the protein-coding gene strat-
egy, with 96.66% of its positive predictions overlapping active chromatin, 98.27% and 
92.04% co-localized with at least one transcription factor and H3K4me3 peak.

Conclusions: CAGE is a key protocol in deciphering the language of transcription, 
however, as every experimental protocol, it suffers from biological and technical noise 
that can severely affect downstream analyses. DeepTSS is a novel DL-based method 
for effectively removing noisy CAGE signal. In contrast to existing software, DeepTSS 
does not require feature selection since the embedded convolutional layers can readily 
identify patterns and only utilize the important ones for the classification task.
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This study highlights the key role that DL can play in Molecular Biology, by removing 
the inherent flaws of experimental protocols, that form the backbone of contempo-
rary research. Here, we show how DeepTSS can unleash the full potential of an already 
popular and mature method such as CAGE, and push the boundaries of coding and 
non-coding gene expression regulator research even further.

Keywords: TSS, CAGE, Bioinformatics, Promoter, Transcription, Machine Learning, 
Deep Learning, GSP

Background
With the advent of Next Generation Sequencing (NGS) in the early twenty-first cen-
tury, the scientific fields related to transcriptional dynamics have experienced signifi-
cant breakthroughs at an unprecedented rate. In 2003, Cap Analysis of Gene Expression 
(CAGE) was introduced as an experimental method that is able to capture and quantify 
the 5’ end of capped RNA, making it an ideal tool for transcriptomic studies [1]. CAGE 
has gradually been improved into a state-of-the-art approach for genome-wide promoter 
and enhancer characterization. The FANTOM consortium [2] has been pioneering the 
CAGE refinement effort by sequencing thousands of CAGE samples.

This volume of information has been systematically used for the past two decades to 
characterize the regulatory genomic regions of model organisms and to advance our 
knowledge about the gene regulatory networks implicated in numerous diseases. How-
ever, recent studies have revealed that CAGE samples inherently suffer from significant 
levels of noise [3–5]. Specifically, the detected noise mostly corresponds to byproducts 
of the splicing and transcription machineries. Such signal is entirely unrelated to tran-
scription initiation and exists even in high quality samples, suggesting the need for pre-
processing of CAGE data to increase the specificity of this protocol for transcription 
start site (TSS) identification (Fig. 1).

The need to remove the aforementioned noise and maintain crucial TSS-related sig-
nal, has led to the development of computational methods that, given a CAGE sample 
already aligned on the genome, they provide a list of signal enriched regions. For some 
of these algorithms, the selection of the provided CAGE peaks is based on statistical 
methods while for others on Machine Learning (ML). CAGER [3] and RECLU [4] belong 
in the first category of algorithms that remove noise by statistically analyzing its repro-
ducibility across replicated experiments. PARACLU [1] operates in a more simplistic 
way by aggregating reads into peaks using certain distance or expression criteria. The 
TOMETOOLS suite [2] includes a classifier that is able to filter out non-TSS associated 

Fig. 1 RAB7A gene locus shown as an example of the noisy signal embedded in CAGE samples. Besides 
the CAGE peak that is located on the annotated TSS of RAB7A, there are numerous tag clusters localized 
upstream and especially within the intronic as well as the exonic regions. Ideally, every TSS identification 
algorithm that utilizes CAGE, should be able to accurately remove the noise and only keep CAGE peaks that 
correspond to transcription initiation events
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CAGE signal, based on Gaussian mixture models and a random decision tree ensemble. 
iTiSS [6] performs a joint analysis of several complementary datasets for distinguishing 
between true and false positive TSSs. ADAPT-CAGE [7] is the latest addition to CAGE 
processing algorithms, and combines structural and promoter-associated motif features 
with ML to distinguish between TSS-related signal and transcriptional noise. ADAPT-
CAGE uses a stacked modular ML architecture. Each module operates on a separate fea-
ture category and forwards its output to the next layer, formulating an agent assembly 
strategy.

Signal processing methods have long been used in Biology for providing answers 
related to a multitude of intriguing questions such as exon and sequence structure pre-
diction [8, 9], protein-coding DNA sequence identification [10] and the localization of 
repeat elements [11]. When applied to biological problems, these methods are referred 
to as genomic signal processing (GSP), and they include techniques for transforming 
the NGS signal and the underlying DNA sequence to numerical vectors in order to be 
treated as time-series data [12].

Typically, in computational pipelines, GSP is initially applied to extract a set of features 
that are subsequently used as input to ML algorithms. Even though there are a multitude 
of genomic studies in the literature that combine GSP with ML [13–15], there is no evi-
dence of how GSP-derived features perform when used as input for Deep Learning (DL) 
for studying transcription. There is early work that dates back to 1998 [16] that paved 
the way for DL as we know it today. DL is a subfield of ML that refers to state-of-the-
art Neural Network (NN) algorithms that typically include convolutional layers (CNNs) 
prior to the densely connected part of the architecture [16]. The stacks of convolutional 
layers can progressively learn primitive to more abstract patterns and forward their deci-
sion to a multilayer perceptron type of neuron cluster also referred to as dense layers. 
Since 2012, and due to the technological advancements of graphics processing units, the 
training of NNs with dozens of layers and millions of parameters became computation-
ally feasible [17]. This breakthrough has revolutionized numerous scientific fields includ-
ing Biology, Chemistry, Physics, Pharmacology, Engineering, Economics as well as the 
commercial and industrial sectors [18–22]. Specifically in Biology, DL has been applied 
to a wide spectrum of fields such as transcriptomics [23], genomics [24], and epigenetics 
[25] among others, achieving unprecedented levels of performance.

In this study, we introduce DeepTSS, an extension of our previous method named DiS-
TSS [26] for distinguishing between TSS-associated CAGE signal and biological or tech-
nical noise. DeepTSS is a computational framework for accurate and single-nucleotide 
resolution TSS identification that combines GSP, sequence and evolutionary conser-
vation features, CAGE data and DL (Fig.  2c). After basic pre-processing, aligned tags 
overlapping with CAGE peaks are transformed to signal vectors in the time domain and 
GSP-inspired features are calculated. Additionally, the DNA sequence corresponding 
to CAGE peaks is one-hot encoded and structural features are extracted along with the 
evolutionary conservation score as calculated by phyloP [27]. Each feature type is pro-
vided as input to separate convolutional layers, which is a branching scheme that has 
already been successfully utilized in the context of precursor microRNA prediction [18]. 
The output of these layers is concatenated and forwarded to the densely connected part 
of the architecture. Using a multifaceted benchmarking strategy based on annotated 
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genomic loci and experimental data, DeepTSS was found to outperform previously pub-
lished algorithms in distinguishing real transcription initiation events from biological 
and protocol-induced noise. DeepTSS is a Python framework specifically designed for 
ease-of-use that is freely accessible at https:// github. com/ Diana Labor atory/ DeepT SS.

Results
Regardless of their common objective, the evaluation process of algorithms with diverse 
feature extraction processes and mathematical modeling is far from trivial. Our strategy 
for comparing DeepTSS, ADAPT-CAGE, TOMETOOLS, CAGER, RECLU, PARACLU 
and iTiSS was specifically designed to calculate an unbiased estimate of each algorithm’s 
performance. The first benchmark is based only on protein-coding gene annotations 
that were used to divide the genome into promoter (positive) and non-promoter (nega-
tive) regions. The second benchmark consists of purely experimental data including 
H3K4me3 and transcription factor ChIP-Seq enriched regions as well as a segmentation 
of the human genome into chromatin states as calculated by ChromHMM [28], down-
loaded from the Roadmap Epigenomics Project.

DeepTSS was trained on CAGE samples from H9 cells and all benchmarks were based 
on K562 datasets to query its ability to generalize on unseen data.

Evaluation based on protein‑coding gene annotation

The evaluation of TSS predictors, presented in this section, was based on a benchmark 
created by annotated protein-coding genes. For each TSS we labeled the proximal region 
(± 500b) as the positive zone, and the flanking region (± 50.000b) as the negative zone 
(Additional file  3: Fig. S2). Positive predictions overlapping the positive zones were 
deemed true positives (TP) and the rest were considered false positives (FP). Any predic-
tion falling within a negative zone and exhibiting an overlap with H3K4me3 ChIP-Seq 
peaks was flagged as a TP instead of FP.

Positive zone is defined as a ± 500b window centered on the annotated TSS as it has 
been reported to be occupied by TSSs across different tissues (e.g. alternative TSSs) [29] 
or under different conditions [30].

(See figure on next page.)
Fig. 2 Overview of training set selection, feature extraction and DeepTSS DL architecture. a Synopsis of 
the process for labeling H9 CAGE peaks as positive or negative samples. Peaks exhibiting an overlap with 
annotated protein-coding gene TSSs as well as both H3K4me3 and Polymerase II enriched loci were labeled 
as positives while those that overlapped with either of the two marks but not with annotated TSSs were 
removed from any subsequent analysis. CAGE peaks that did not overlap with any of the two marks and 
annotated TSSs were marked as negatives. b For each peak representative (position with highest amount 
of overlapping 5’ end of tags) we extracted the centered underlying sequence (600 bp) and proceeded to 
extract four distinct feature categories. The one-hot encoded version of the sequence, the GSP-inspired 
and structural DNA sequence-based features as well as the per nucleotide evolutionary conservation 
evidence. c DL architecture of DeepTSS, specifically designed for exploiting each individual feature type. 
The architecture consists of 4 distinct convolutional branches for processing the different feature types. The 
first branch operates on the one-hot encoded version of the input DNA sequence, the second and third on 
GSP and structural DNA features respectively, and the fourth on the evolutionary conservation evidence. All 
branches are designed with 2 consecutive convolutional layers and their output is concatenated prior to 
the application of the fully connected part of the network. The final output is based on a sigmoid activation 
function

https://github.com/DianaLaboratory/DeepTSS
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To also observe the performance based on a different point of view, instead of evalu-
ating each CAGE peak individually, we considered that a positive prediction is a gene 
exhibiting at least one overlapping CAGE peak (algorithms’ output) with its TSS vicinity 
(± 500 bp).

In the case of DeepTSS and ADAPT-CAGE, we applied several score cutoffs to explore 
their performance in the full score range (Fig. 3). PARACLU, RECLU, CAGER and iTiSS 

Fig. 2 (See legend on previous page.)
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do not provide a score for every CAGE peak. Instead, their output is the equivalent of 
DeepTSS and ADAPT-CAGE predictions after applying a score cutoff. For this reason, 
precision-recall curves were not calculated for PARACLU, RECLU, CAGER and iTiSS, 
which are denoted as points in the graphs. A comparison of all algorithms on this bench-
mark is also presented in Table 1. PARACLU, RECLU, CAGER and ADAPT-CAGE were 
used with default settings, and DeepTSS with a score cutoff of 0.9.

In Fig. 3a we observe the performance, in terms of precision and sensitivity, of various 
DeepTSS models that were trained on multiple combinations of the four input features 
types (Fig. 2c), denoted as Sequence-Signal, Sequence-Conservation, Sequence-Signal-
Structural and Sequence-Signal-Structural-Conservation. In addition, we have added 
our initial GSP-inspired algorithm, DiS-TSS [26], to showcase the difference in perfor-
mance after adding more features and by using DL instead of SVM for modelling the 
data. We also added a DL model trained on the GSP signals that were used in DiS-TSS 
study and the one-hot encoded version of the raw DNA sequence, denoted as Sequence-
DiS-TSS. The best performing DeepTSS model was the one trained with all four feature 

Fig. 3 Annotation-based evaluation in K562 cells, based on known protein-coding TSSs. For all algorithms, 
we applied multiple score cutoffs to calculate performance metrics in a wide range of prediction confidence 
and generate Precision-Sensitivity as well as TP-FP curves. a Comparison of distinct DeepTSS models trained 
with different combinations of input feature types and our initial GSP-inspired algorithm, DiS-TSS [26], that 
used SVM to model the data. The green curve corresponds to a DL model trained on the GSP features 
used in DiS-TSS and the one-hot encoded version of the raw DNA sequence. b DeepTSS, ADAPT-CAGE and 
TOMETOOLS performance as measured with precision and sensitivity. Trade-off between TPs and FPs in the 
CAGE peak- (c) and gene-oriented (d) evaluation



Page 7 of 17Grigoriadis et al. BMC Bioinformatics  2022, 23(Suppl 2):395 

types and was considered our final model for all subsequent analyses and comparisons. 
The comparison between DeepTSS, ADAPT-CAGE and TOMETOOLS is shown in 
Fig. 3b (Additional file 1: Table S1). The number of TPs and FPs after applying multiple 
thresholds can be seen in Fig. 3c (Additional file 1: Table S1). The performance on the 
gene-oriented approach is presented in Fig. 3d (Additional file 1: Table S2).

In Fig. 4, the RAB7A and TXLNA locus is shown as an example that highlights the 
capacity of each algorithm to accurately remove noise from CAGE data.

Evaluation based on ChromHMM‑derived genome annotation and experimental data

In this section we present the comparison results based on two evaluation bench-
marks on K562 cells (Additional file 1: Tables S3 and S6A–D). The first one is based on 

Table 1 Evaluation results in K562 cells, based on annotated protein-coding gene TSSs. From left to 
right, the number of total positive predictions of each algorithm is shown, the number of TPs and 
FPs in both CAGE- and gene-oriented benchmarks as well as the performance in terms of precision 
and sensitivity on default parameters

Algorithm Total positive 
predictions

All predictions in 
query zone

Gene − oriented set of 
predictions

Protein‑coding TSS 
annotation

TP FP TP FP Precision Sensitivity

DeepTSS 31,443 6398 123 3122 91 0.98 0.96

ADAPT-CAGE 31,177 6294 172 3091 125 0.97 0.94

CAGER 14,465 6489 1771 3102 1003 0.97 0.78

PARACLU 9453 4016 129 2258 95 0.97 0.60

RECLU 11,558 6257 1649 3082 970 0.93 0.79

TOMETOOLS 30,689 5765 228 3016 174 0.96 0.86

iTiSS 1734 98 37 118 40 0.72 0.01

Fig. 4 Example of each algorithm’s capacity for accurately removing noise from CAGE data. We have added 
tracks of experimental evidence (Polymerase II and H3K4me3) to highlight the CAGE signal that corresponds 
to the transcription initiation site of a RAB7A and b TXLNA. The prediction of each algorithm is shown on 
separate tracks
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ChromHMM, a well-established ML algorithm for genome segmentation on different 
chromatin states from the analysis of six histone modifications (Fig.  5a, b, Additional 
file 2: Fig. S1A, B). The second is based on purely experimental data related to H3K4me3 
and TFBS occupancy (Fig. 5c, d, Additional file 2: Fig. S1C, D). We applied a 0.9 score 
cutoff on DeepTSS and default settings (Additional file 1: Table S4) on ADAPT-CAGE, 
TOMETOOLS, PARACLU, RECLU, CAGE and iTiSS for isolating their positive pre-
dictions. A summary of the comparison results of this evaluation process is shown in 
Table 2.

Fig. 5 Evaluation of algorithms based on H3K4me3 and TF ChIP-Seq peaks as well as ChromHMM-derived 
chromatin states from the analysis of six histone modifications in K562 cells. Percentage of each algorithm’s 
positive (a) and negative (b) predictions overlapping chromatin states associated with genomic regions 
exhibiting active (left panel) and weak/repressed (right panel) transcription. Percentage of the algorithms’ 
positive predictions with at least one TFBS (c) and H3K4me3 peak (d) derived from ChIP-Seq



Page 9 of 17Grigoriadis et al. BMC Bioinformatics  2022, 23(Suppl 2):395 

In the first benchmark we calculated the percentage of each algorithm’s positive 
predictions with active transcription (group 1) and repressed or weak transcription 
chromatin states (group 2) as annotated by ChromHMM (Fig. 5a). 96.66% (30,376) of 
DeepTSS’s positive predictions were found to overlap group 1 and 3.33% (1047) group 
2. ADAPT-CAGE performance was 95.90% (29,885) and 4.09% (1276) for group 1 and 2 
respectively, TOMETOOLS 92.59% (28,395) and 7.40% (2272), PARACLU 94.01% (8868) 
and 5.98% (565), RECLU 93.35% (10,773) and 6.64% (767), CAGER 84.62% (12,195) and 
15.37% (2215) and iTiSS 41.58% (721) and 58.41% (1013).

In the case of negative predictions (Fig. 5b), DeepTSS exhibited an overlap of 28.74% 
(4576) with group 1 and 71.25% (11,343) with group 2, 31.31% (5067) and 68.68% 
(11,114) for ADAPT-CAGE, 39.42% (6609) and 60.57% (10,155) for TOMETOOLS, 
61.25% (18,522) and 38.75% (11,718) for PARACLU, 69.72% (27,147) and 30.27% (11,790) 
for RECLU, 57.63% (13,643) and 42.36% (10,029) for CAGER and 73.94% (34,405) and 
26.05% (12,121) for iTiSS.

For the second evaluation approach we wanted to explore the occupancy of TF and 
H3K4me3 ChIP-Seq peaks in the vicinity of positive predictions (Fig. 5c, d for TF and 
H3K4me3 respectively). For DeepTSS, 98.27% (30,898) of positive predictions over-
lapped with at least one TFBS and 92.04% (28,939) with H3K4me3, ADAPT-CAGE 
97.72% (30,466) and 91.12% (28,409), TOMETOOLS 95.46% (29,296) and 88.12% 
(27,044), PARACLU 95.26% (9005) and 92.06% (8702), RECLU 94.32% (10,902) and 
89.96% (10,397), CAGER 87.67% (12,681) and 81.11% (11,732) and iTiSS 48.12% (848) 
and 41.94% (739).

Table 2 Summarized evaluation results in K562 cells, based on chromatin states, experimental data 
and annotated protein-coding TSSs. From left to right, each column shows the number of total 
positive predictions of each algorithm, the percentage overlapping with chromatin states associated 
with active and weak/repressed transcription, and at least one TF and H3K4me3 peak

Algorithm Total positive 
predictions

ChromHMM 
active 
transcription

ChromHMM 
weak 
transcription

TF ChIP‑Seq peaks H3K4me3 
ChIP‑Seq 
peaks

DeepTSS 31,443 96.66% 3.33% 98.27% 92.04%

(30,376) (1047) (30,898) (28,939)

ADAPT-CAGE 31,177 95.90% 4.09% 97.72% 91.12%

(29,885) (1276) (30,466) (28,409)

CAGER 14,465 84.62% 15.37% 87.67% 81.11%

(12,195) (2215) (12,681) (11,732)

PARACLU 9453 94.01% 5.98% 95.26% 92.06%

(8868) (565) (9,005) (8702)

RECLU 11,558 93.35% 6.64% 94.32% 89.96%

(10,773) (767) (10,902) (10,397)

TOMETOOLS 30,689 92.59% 7.40% 95.46% 88.12%

(28,395) (2272) (29,296) (27,044)

iTiSS 1734 41.58% 58.41% 48.12% 41.94%

(721) (1013) (848) (739)
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Discussion
In multicellular organisms, the diversity of gene expression is a key driver of the func-
tional variability that is observed across distinct cell types. The exploration of the 
mechanisms responsible for transcription and the identification of the underlying pat-
terns of gene expression regulation, will always be based on highly optimized experi-
mental techniques that provide trustworthy data with minimized levels of noise.

During the past two decades, numerous experimental protocols were developed spe-
cifically to facilitate studies related to transcription dynamics, including CAGE-, RNA-, 
GRO- and ChIP-Seq. Each protocol focuses on different aspects of the transcription 
process and inherently possesses different types and levels of noise and biases. Regard-
less, eliminating these biases and minimizing the noize is a procedure that often requires 
the development of computational methods that utilize statistical models or even ML.

CAGE is a protocol that offers a clear advantage when studying the dynamics 
related to transcription initiation, alternative promoter usage and the identification 
of enhancer RNAs. CAGE was initially introduced in 2003 [31], and since then it has 
been continuously refined by the FANTOM consortium in a process that resulted in 
thousands of CAGE samples from a wide range of cell types and tissues in human and 
mouse [2]. The success of CAGE is undeniable, and reflects on the number of high 
impact studies available in the literature [32–36] that utilized this protocol and the 
wealth of information available in the FANTOM repository.

The increased popularity of this protocol inevitably resulted in the identification of 
its drawbacks. The major flaw in this method is associated with the high levels of bio-
logical and technical noise that has been systematically identified by recent studies [1, 
3, 4, 7]. It becomes apparent that the community needs computational methodologies 
that filter out the noise without risking the ability of CAGE to capture transcription 
initiation events.

Several in silico methodologies have already been introduced in the literature that 
attempt to deal with the aforementioned limitations of CAGE. PARACLU [1], RECLU 
[4] and CAGER [3] use statistical modeling to identify CAGE peaks that can be repro-
duced across replicate samples of the same experiment. iTiSS [6] performs a joint 
analysis of several complementary datasets to remove false positive TSSs. ADAPT-
CAGE [7] and TOMETOOLS [2] are the only algorithms that are entirely based on 
engineering features related to transcriptionally engaged regulatory elements and 
ML. ADAPT-CAGE has achieved breakthrough performances in removing CAGE 
signal that does not correspond to transcription initiation events. However, its major 
limitation is the process of feature engineering since it requires people with domain 
expertise and can often lead to the unintentional introduction of biases.

In this study we introduce DeepTSS, a novel computational methodology that com-
bines for the first time, GSP, structural DNA features calculated directly from the 
sequence, the encoded version of raw DNA sequence and evolutionary conserva-
tion evidence, with DL. The comparison between DeepTSS and existing algorithms 
was a highly sensitive process and required meticulous planning, since each in sil-
ico approach is fundamentally different from the others both algorithmically and in 
terms of the underlying mathematical framework. Even though each comparison 
benchmark in our threefold strategy has its own advantages and disadvantages, they 
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perfectly complement each other, and most importantly, they provide a view of the 
algorithms’ performance under distinct testing environments, unveiling important 
clues on their applicability and functional limitations.

Conclusions
CAGE is a key protocol in deciphering the language of transcription dynamics, and its 
contribution in advancing the field of gene regulatory networks has been instrumental. 
Despite its popularity, CAGE is not absent from the list of experimental methods that 
suffer from biological and technical noise that if not removed, can significantly diminish 
the robustness of downstream analyses.

DeepTSS is a novel DL-based computational framework for removing noise from 
CAGE data and maximizing the probability that the remaining CAGE signal corre-
sponds to transcription initiation events. DeepTSS operates on a seemingly unrelated 
spectrum of features that are used as input to a DL architecture that was specifically 
designed to exploit each individual feature type. In contrast to existing implementa-
tions, DeepTSS does not require any kind of prior feature engineering process since it 
relies on convolutional layers directly embedded in the DL architecture that can readily 
identify patterns and only utilize the important ones for the classification task. DeepTSS 
was found to outperform existing state-of-the-art implementations when evaluated on a 
meticulously designed strategy that included experimental data and high quality genome 
annotations.

This study highlights the importance of ML, and specifically DL, in providing solutions 
to removing inherent flaws in experimental methods that are the bread-and-butter of 
contemporary Molecular Biology research. Reliable algorithms, such as DeepTSS, can 
unleash the full potential of already popular protocols such as CAGE, and play a fun-
damental role towards unveiling key gene expression regulators as well as pushing the 
boundaries of non-coding RNAs implication in regulatory networks even further.

Methods
Annotation and experimental data

Pre-aligned CAGE datasets in bam format (GRCh38 assembly), from H9 and K562 cells 
(CNhs11917 and CNhs12334 sample codes) and the corresponding collapsed CAGE 
tags (5’ end) contained in ctss files were downloaded from FANTOM repository [2]. 
DeepTSS and ADAPT-CAGE can either be applied on bam files or bed files with pre-
calculated CAGE peak representatives and iTiSS can only be utilized on bam files. In 
contrast, PARACLU, RECLU and CAGER can only be applied on the ctss files.

ChIP-Seq datasets for Polymerase II and H3K4me3 with ENCFF281VBW, 
ENCFF773FKD, ENCFF757WPX and ENCFF261REY sample codes were downloaded 
from the ENCODE repository [37] in bed narrowpeak format and the UCSC liftover 
software was used to migrate them to GRCh38 assembly coordinates.

Genomic locations of transcription factor binding sites (TFBS) from 161 TFs in 91 cell 
types were derived from the ENCODE ’Txn Factor’ track in UCSC. The protein-coding 
gene annotation was downloaded from Ensembl v98 [38], and the 100 way phyloP per-
nucleotide evolutionary conservation score from UCSC.
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Overview of DeepTSS

Within the DeepTSS framework, users can initially provide pre-aligned CAGE tags in 
bam format and tags with a lower than a user-defined (default = 10) mapping quality 
are removed. The remaining tags are grouped into peaks based on distance parameter 
(default = 50  bp). Subsequently, the expression level (normalized in tags per million—
tpm) of each peak is calculated and those below a user-defined cutoff (default = 1) are 
removed. Within every peak, the position with the highest number of overlapping 5’ tag 
ends is identified and selected as the peak representative. Alternatively, users can pro-
vide their own bed formatted CAGE peak representatives directly as input to DeepTSS 
and void all the previous steps. DeepTSS will then proceed to extract all the required 
features from the region surrounding the representatives and apply the DL model to 
score them.

Network architecture

DeepTSS utilizes the one-hot encoded DNA sequence surrounding the CAGE peak rep-
resentatives, GSP and structural features extracted from the sequence, and evolutionary 
conservation as calculated by phyloP. GSP and structural features are standardized sepa-
rately for each branch while the conservation score is not processed (zeros are assigned 
to regions with no score).

For each input category a separate convolutional branch is created, composed of 2 lay-
ers (Fig. 2c). The computations from all branches are concatenated and directed to the 
final fully connected layers of the architecture. All branches operate on a 600 bp win-
dow size. We tested a multitude of models with different filter numbers, kernel sizes and 
nodes in the dense layers and we picked the combination that achieved the best per-
formance on the test set (data not shown). The one-hot encoded sequence, GSP and 
structural feature branches were built with 20/10 filters and 16/12 kernel sizes in the 
respective convolutional layers. The evolutionary conservation branch includes 32 filters 
for the first convolution layer and 16 for the second with kernel sizes 16 and 8 respec-
tively. The range of values for the number of filters in both layers was 20, 30 and 40. The 
range for the kernel length was 20/15, 16/12 and 12/8. The fully connected part con-
sists of 3 layers with 120/60/25 nodes, while the range of tested values was 140/80/40, 
120/60/25 and 100/60/20. We selected leaky ReLU as the activation function of all layers 
followed by batch normalization. For the final layer that produces the algorithm’s output, 
we selected the sigmoid function.

All models were trained with binary cross entropy, for 60 epochs with the early stop-
per parameter enabled and a patience of 10 epochs. Hyperparameters were tuned by 
training different models for over 60 epochs exhausting all possible combinations, con-
cluding in 0.001 learning rate with ‘Adam’ optimizer, batch size fixed at 256 and drop 
out rate of 0.2 (Additional file 1: Table S5). We tested models with 0.01, 0.001, 0.0005 
and 0.0001 learning rates, 64, 128, 256 and 512 batch sizes and 0.2, 0.25, 0.3, 0.35 drop-
out rates. For the hyper-parameters tuning approach, a grid search has been utilized by 
learning for each of the hyper-parameter configurations and selects the best performing 
combination, over all.
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Feature extraction

Several GSP-inspired features were specifically selected as approximations of DNA’s 
physicochemical properties in the form of distinct time series. Z-Curve [39] comprises 
three signal vectors, each providing a unique representation of a DNA sequence. The 
three components  xn,  yn and  zn correspond to an irrespective nucleotide distribution 
where  xn describes the distribution of purines/pyrimidines,  yn the functional group 
of the bases (amino or keto) and  zn the strength of the hydrogen bonds between base 
pairs (strong H-bond or weak H-bond). DNA-walk [40] describes a graph where a step 
upwards is taken if the current nucleotide is a pyrimidine and vice versa for a purine 
(does not take into account the previous nucleotide in contrast to Z-Curve). Paired 
numeric [41] incorporates the complementarity DNA sequences. The tetrahedron repre-
sentation [42] is a fixed mapping method where all four nucleotides are considered to be 
the four vertices of a regular tetrahedron. DeepTSS also utilizes structural DNA features 
associated with promoter regions (Bendability and Propeller Twist) [43].

All spatial signals are calculated based on a 600 bp window around the CAGE peak 
representative. The window size has been decided based on the performance of multiple 
models trained with different values (data not shown), and its application was achieved 
with a stride of 1 bp. Z-Curve and tetrahedron representations are multidimensional sig-
nals composed of three vectors while DNA walk and paired numeric are one-dimen-
sional vectors. These signal features are able to describe a genomic sequence, identify 
hidden periodicities and nucleotide distributions that can not be revealed with conven-
tional methods.

Structural features were calculated by using a sliding window and converting each 
600 bp sequence to overlapping 3-mers or 2-mers. For bendability, the input sequences 
were fragmented into overlapping 3-mers (1 bp stride), and for each 3-mer we assigned 
a score that was derived from earlier biochemical studies [44]. The dimensionality of the 
resulting vector was 598. The same strategy was applied for propeller twist [45, 46], with 
the only difference being that this feature is based on 2-mers. Therefore, the resulting 
vector had 599 values.

These features effectively transform the input DNA sequences into time series. In 
addition, each input sequence is also transformed into its one-hot encoded version and 
the phyloP-derived numerical representation of its evolutionary conservation. Regard-
less of the feature type, the application of the neural network convolutional process 
ensures that local patterns and more abstract combinations of them across different fea-
ture types that maximize the DL model’s capacity for distinguishing between positive 
and negative CAGE peaks will be identified.

DeepTSS training

CAGE peaks and their representatives (N = 38,439) were extracted from the H9 sam-
ple, as described in the Overview of DeepTSS section, and used for training our model 
(Fig. 2b). Peaks that overlapped H3K4me3 and Polymerase II ChIP-Seq enriched loci and 
were positioned within 1 kb from annotated protein-coding TSSs, comprised the posi-
tive set (N = 11,304). Intergenic CAGE peaks that did not overlap with either H3K4me3 
or Polymerase II bound regions formed the negative set (N = 11,579). Promoter-proxi-
mal CAGE peaks that were localized in regions flanking annotated promoters (9 kb in 
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each direction and outside of the previously mentioned 1  kb window) were removed 
entirely from all analyses, to avoid the putative inclusion of functionally rich information 
in the negative set. We also generated a benchmarking set of 75,127 CAGE peaks (32,310 
positives and 42,817 negatives) from the K562 sample which was used to query the gen-
eralization capacity of DeepTSS on data from a biological context that was not included 
in the training process, and to compare its performance with existing algorithms.

Chromosomes 15 and 14 were completely left out of the training process. The former 
was used for testing the models during the optimal hyperparameters search and the lat-
ter as an evaluation set during training. For all loci in the training and validation sets, 
a sliding window of 600 bp (the window based on which the input features are calcu-
lated) was used. Initially, the window was placed 100  bp upstream of the CAGE peak 
representative position and then moved to its final position 100 bp downstream, with a 
25 bp stride. Therefore, for each sample in the initial set of CAGE peak representatives, 
we generated 7 additional samples where the input DNA sequence, based on which all 
input features are calculated, is not centered on the representative. With this approach, 
we augmented the input set by generating more samples and forced our model to remain 
unaffected by any potential biases regarding the position of the CAGE peak representa-
tives within the input sequences [18].

Application of existing algorithms

CAGER, RECLU, PARACLU and iTiSS were applied on the ctss files provided by FAN-
TOM with default parameters and the results we considered as their positive predic-
tions (Additional file  1: Table  S4). Of the existing algorithms, TOMETOOLS and 
ADAPT-CAGE are the only methods that utilize ML to filter out noise from CAGE sig-
nal. ADAPT-CAGE and DiS-TSS were also used with default parameters (Additional 
file 1: Table S4). For TOMETOOLS, we downloaded 1,048,124 scored CAGE enriched 
loci, from all cell types profiled by FANTOM in the TSS_human from http:// fantom. 
gsc. riken. jp/5/ datafi les/ phase1. 3/ extra/ TSS_ class ifier. Liftover from UCSC was used to 
convert the coordinates to hg38. In this file, the information related to each CAGE peak 
cell-specificity is absent. To find TOMETOOLS predictions for the K562 cell line, we 
overlapped the TSS_human file with the K562 CAGE peaks (N = 47,377). This way, we 
generated TOMETOOLS predictions in H9 and K562 cells (Additional file 1: Table S1). 
The score threshold (0.228) was chosen based on the algorithm’s documentation and was 
used in the evaluation process shown in Fig. 3. In Fig. 5 benchmark, we applied multiple 
score thresholds.

It should be noted that due to the minor differences on the accepted input format and 
underlying processing mechanism of each algorithm, might lead to differences between 
the resulting CAGE output.

The computational times for ADAPT-CAGE, CAGER, RECLU, PARACLU and iTiSS 
are ~ 13 h, ~ 46 min, ~ 13 min, ~ 4 s and ~ 30 min respectively, for ~ 47,000 CAGE peaks. 
TOMTOOLS peaks were downloaded directly from the Fantom5 repository.

http://fantom.gsc.riken.jp/5/datafiles/phase1.3/extra/TSS_classifier
http://fantom.gsc.riken.jp/5/datafiles/phase1.3/extra/TSS_classifier
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Software requirements and benchmarking

DeepTSS was developed with Python 3.7, and TensorFlow (version 2.2) with Keras API 
(version 2.4.3) for implementing the DL part of the framework. All dependencies and a 
thorough documentation can be found at the GitHub repository.

To apply DeepTSS, users must provide a CAGE bam file or a bed file with precalcu-
lated CAGE peak representatives, the corresponding human genome assembly in fasta 
format, and the evolutionary conservation score as calculated by phyloP in bigWig for-
mat. If the phyloP score is not provided, the evolutionary conservation branch will not 
be used and predictions will be based on the other feature types.

DeepTSS was benchmarked in terms of computational cost on a computer running on 
an Intel Xeon E5-2630 v3 @ 2.40 GHz and a total of 8 threads was utilized for perfor-
mance benchmarking, to simulate the average CPU capacity of personal computers. The 
time cost for predicting approximately 40,000 CAGE peak representatives was ~ 4 min 
on average, with all convolutional branches enabled.
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