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Abstract 

Background: Brain volume has been widely studied in the neuroimaging field, since it 
is an important and heritable trait associated with brain development, aging and vari-
ous neurological and psychiatric disorders. Genome-wide association studies (GWAS) 
have successfully identified numerous associations between genetic variants such as 
single nucleotide polymorphisms and complex traits like brain volume. However, it is 
unclear how these genetic variations influence regional gene expression levels, which 
may subsequently lead to phenotypic changes. S-PrediXcan is a tissue-specific tran-
scriptomic data analysis method that can be applied to bridge this gap. In this work, 
we perform an S-PrediXcan analysis on GWAS summary data from two large imaging 
genetics initiatives, the UK Biobank and Enhancing Neuroimaging Genetics through 
Meta Analysis, to identify tissue-specific transcriptomic effects on two closely related 
brain volume measures: total brain volume (TBV) and intracranial volume (ICV).

Results: As a result of the analysis, we identified 10 genes that are highly associated 
with both TBV and ICV. Nine out of 10 genes were found to be associated with TBV in 
another study using a different gene-based association analysis. Moreover, most of 
our discovered genes were also found to be correlated with multiple cognitive and 
behavioral traits. Further analyses revealed the protein–protein interactions, associated 
molecular pathways and biological functions that offer insight into how these genes 
function and interact with others.

Conclusions: These results confirm that S-PrediXcan can identify genes with tissue-
specific transcriptomic effects on complex traits. The analysis also suggested novel 
genes whose expression levels are related to brain volumetric traits. This provides 
important insights into the genetic mechanisms of the human brain.
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Background
Brain volume changes throughout life and varies considerably across different individu-
als [1]. Abnormal changes in brain volume are also associated with several neuropsy-
chiatric and degenerative disorders [2]. The variation in human brain volume can be 
studied with MRI. Specifically, whole brain MRIs are obtained and can be segmented 
into different pre-defined regions of interest (ROIs) for ROI-based volumetric analysis 
[2]. Brain ROI volumes are also highly heritable. The heritability of some ROI volumes 
is over 80%, based on data from twin studies, and it varies for different ROIs [3–8]. For 
example, heritability can range from 60 to 85% for different ROIs in the basal ganglia, 
limbic and diencephalic regions [7]. Variation in human brain volume is also associ-
ated with common genetic variants, called single-nucleotide polymorphisms (SNPs). In 
aggregate, SNPs account for over 50% of the variation in brain volumetric traits [9–13]. 
Therefore, genome-wide association studies (GWAS) of brain imaging phenotypes have 
been conducted to localize specific SNPs associated with phenotypic variation in brain 
structural and functional traits [2, 10, 13–15].

GWAS, however, cannot provide complete information on molecular mechanisms 
(such as gene expression alterations) underlying the connections between SNPs and 
complex traits. This represents a big gap for therapeutic development, as treatments 
often aim to target disease processes at the transcriptional level. Moreover, most of the 
SNP heritability (over 90%) is explained by noncoding variants, mainly in regulatory 
regions [16]. This further highlights the importance of understanding the association 
of gene expression regulation and the resulting phenotypes. For that reason, PrediX-
can, a gene-based association analysis, was developed [17], to integrate SNP-based gene 
expression prediction models with GWAS analysis. The prediction model imputes the 
gene expression level based on all the SNPs within the gene. By using these predicted 
gene expression measures, PrediXcan can be employed to identify genes whose expres-
sion levels are associated with a phenotype, overcoming the limitations of GWAS. By 
mapping a large number of SNPs (e.g., over a million) to a moderate number of genes 
(e.g., less than twenty thousand), the PrediXcan strategy can greatly reduce the burden 
for multiple comparison and thus potentially increase detection power. On the other 
hand, given the tissue-specific nature of gene expression, different prediction models 
can be constructed to link gene expression data with phenotype traits for different tissue 
types [17].

Another advantage of PrediXcan is that it can be integrated into meta-analysis studies 
that aggregate GWAS results from multiple cohorts [17]. These meta-analyses generate 
“GWAS summary data” that can identify associations not detectable with smaller sample 
sizes. Methods such as S-PrediXcan were developed to harness the power of large data 
samples while keeping the computational burden at a manageable level [18]. S-PrediX-
can is similar to PrediXcan as both can identify genes whose expression measures are 
associated with phenotypic traits. S-PrediXcan differs from PrediXcan as it proposes an 
analytic strategy to allow the use of GWAS summary statistic data instead of individual 
level data [18].

In this study, we propose to use S-PrediXcan to integrate the GWAS summary statis-
tics of an imaging trait with PrediXcan models linking SNPs to gene expression data in a 
specific brain tissue. The goal is to detect genes whose expression levels have mediating 
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effects on the imaging trait. Specifically, we perform S-PrediXcan analysis (Fig. 1) using 
the brain imaging GWAS summary data for total brain volume (TBV) and intracra-
nial volume (ICV) from two landmark studies: (1) UK Biobank (UKB) [2, 10, 19] and 
(2) Enhancing Neuroimaging Genetics through Meta Analysis (ENIGMA) [13, 14, 20]. 
These GWAS summary data are integrated with 13 brain tissue specific prediction mod-
els from the Genotype-Tissue Expression project (GTEx) [21] to identify genes whose 
expression levels are highly associated with both ICV and TBV. We aim to identify 
promising gene discoveries that can provide important information to help us better 
understand the molecular processes that shape the human brain.

Results
Tissue‑specific transcriptome analysis identified 10 genes that are highly associated 

with both TBV and ICV

In this study, we conducted tissue specific transcriptomic analysis by using S-PrediXcan 
to predict genes that were potentially correlated with brain volumetric measures. We 
first performed the analysis by using the GWAS summary data from the UKB cohort 
and identified 208 significant gene-TBV associations, which involved 52 genes and 13 
brain tissues (Fig. 2a, Additional file 1: Table S1a). To determine whether these 52 genes 
would also be associated with ICV (a relevant brain volume measure), we ran S-PrediX-
can again by using GWAS summary data from the independent ENIGMA2 cohort. We 
observed that 10 out of 52 genes associated with TBV were also associated with ICV 
(Fig. 2b, Additional file 1: Table S1b). The results indicate these 10 genes (SPPL2C, PLE-
KHM1, NSF, MAPT, LRRC37A2, KANSL1, FOXO3, FAM215B, CRHR1, ARL17A) may 

Fig. 1 Schematic diagram describing the pipeline of this study which used S-PrediXcan to predict genes 
that are highly associated with total brain volume (TBV) and intracranial volume (ICV). S-PrediXcan integrates 
two inputs, one of them was trained PrediXcan elastic-net prediction models which derived from GTEx 
genotyping and transcriptome data of 13 brain tissues. The other inputs were GWAS summary statistics data 
of our interested traits: (1) TBV from UKB and (2) ICV from ENIGMA2. The first S-PrediXcan analysis on UKB 
data yielded predicted genes that are highly associated with TBV. The second S-PrediXcan analysis aimed to 
perform a targeted study on a similar trait (ICV) using the GWAS summary data from an independent cohort 
(ENIGMA2) to determine which TBV-associated genes are also significantly associated with ICV



Page 4 of 12Mai et al. BMC Bioinformatics          (2022) 23:398 

contribute to the molecular basis of the brain volumetric measures, and some are been 
associated with cognitive and mental health traits.

Concordance with prior studies and functional mapping of genes highly associated 

with ICV and TBV

Among these 10 genes, 9 of them (except FAM215B) were significantly associated with 
TBV in the gene-based association analysis of the original UKB GWAS (Additional File 
1: Table S2) [2]. While the original UKB analysis revealed the significant collective effect 
of SNPs within each of these genes, our analysis identified the mediating effects of the 
expression levels of these genes not only on TBV (in UKB) but also on ICV (in the inde-
pendent ENIGMA2 cohort). In addition, our S-PrediXcan analysis also yielded valuable 
tissue specificity information, revealing varying mediating effects of these genes across 
different brain tissues (Fig. 2b). Our analysis also identified a new gene (FAM215B), not 
found in prior studies, that was highly associated with brain volume development.

By comparing our results to prior GWAS findings (including those in the NHGRI-
EBI GWAS catalog, https:// www. ebi. ac. uk/ gwas/), 8 out of 10 genes were found to be 
correlated with different cognitive and behavioral traits (Fig. 3). Those traits and their 
associated genes include: neurodegenerative diseases (SPPL2C, NSF, MAPT, KANSL1, 
CRHR1), neuropsychiatric disorders (KANSL1, FOXO3, CRHR1), neuroticism (NSF, 
MAPT, KANSL1, FOXO3, CRHR1), intellectual performance (NSF, FOXO3), reac-
tion time (NSF, MAPT, LRRC37A2, FOXO3, ARL17A), cognitive function (MAPT, 
LRRC37A2, KANSL1, FOXO3, CRHR1, ARL17A), educational attainment (MAPT, 
FOXO3, CRHR1) and mathematical ability (FOXO3, CRHR1). This further supports our 
hypothesis in which our 10 reported genes are important in determining brain struc-
tures and functions.

Fig. 2 Genes that are highly associated with brain volumes based on S-PrediXcan analysis. a Genes that are 
highly associated with TBV using the UKB GWAS summary statistics. b Common genes that are associated 
both with TBV using the UKB GWAS summary statistics and with ICV using the ENIGMA summary statistics. 
Entries marked with * are significant tissue-specific gene-phenotype associations (FDR < 0.05), where 13 GTEx 
brain tissues are plotted on the x axis

https://www.ebi.ac.uk/gwas/
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Molecular investigation of the network of genes associated with ICV and TBV

The interaction network of proteins coded by our discovered set of genes was gen-
erated using STRING (https:// string- db. org/). Among 10 genes, 9 of them (except 
FAM215B) were represented in the database. 7 out of 9 genes were found to inter-
act with the others (Fig. 4). KANSL1 and FOXO3 were found to be the first shell of 
interactors. Two sources used to obtain the protein interaction were “text-mining” 
and “co-expression”. In STRING database, each protein–protein interaction has the 
corresponding interaction score which indicates the confidence of the predicted 
interaction. The scores range from 0 to 1 with 1 indicating the highest level of confi-
dence, and 0.5 indicating that there’s a roughly 50% chance that the predicted interac-
tion could be correct. All the protein–protein interactions in Fig. 4 range from 0.4 to 
0.7, which indicates an intermediate level of confidence [22]. A knowledge of protein 

Fig. 3 Eight of ten genes that are commonly associated with TBV and ICV have also been reported to 
relate with several cognitive functions and mental health disorders (highlighted blocks). This analysis was 
performed by manually searching for our reported genes in the NHGRI-EBI human GWAS catalog and 
recording their associations with traits related to cognitive function and mental health conditions

Fig. 4 Protein interaction network created by the STRING software. As FAM215B does not exist in the STRING 
database, the network includes nine out of ten reported genes that are associated with both TBV and ICV. 
Each node represents each protein-coding gene. Nodes are connected by edges that represent known 
associations between proteins. Colored nodes indicate the first shell of interactors, and white nodes indicate 
the second shell of interactors. Edges with different colors represent different sources used to obtain the 
information on protein associations

https://string-db.org/
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interaction provides valuable information for further understanding of how these 
genes work together to influence brain volume and affect brain-related traits.

Gene Ontology (GO) enrichment analysis was also performed by using 2 different 
tracks: GO Molecular Function and GO Biological process (https:// maaya nlab. cloud/ 
Enric hr/). These analyses suggested some biological processes that were associated 
with the 10 genes, including positive regulation of neuronal death, astrocyte activation, 
microglial cell activation, among others (Fig. 5a, Additional file 1: Table S3). These bio-
logical processes are all related to several central nervous system pathologies such as 

Fig. 5 GO analysis of the 10 genes that are found to highly associated with TBV and ICV. a Top 10 GO 
biological processes that are enriched in our set of 10 discovered genes. b Top 10 molecular functions 
that are enriched by our 10 discovered genes. The x axis represents the name of each biological process 
or molecular function. The y axis represents the -log (p value), where p value comes from the enrichment 
analysis of our 10 reported genes by using https:// maaya nlab. cloud/ Enric hr/

https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
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trauma, stroke, or neurodegenerative diseases. GO analysis also suggested some other 
biological pathways potentially correlated with the roles of these 10 genes, including cel-
lular response to oxidative stress, negative regulation of membrane potential, positive 
regulation of homeostatic process, etc. The molecular functions associated with these 
genes were also determined including kinase binding, core promoter binding, and his-
tone post-translational modifications (Fig. 5b, Additional file 1: Table S4). It should be 
noted that many of the enriched terms resulted from the overlapping of only one or two 
genes which might not be precise enough for the conclusion. However, we hope they 
could shed a light for the future studies on molecular mechanisms that are important to 
the process of brain development and diseases.

Discussion
Changes in brain volumes are known to be correlated with various neurological and psy-
chiatric problems such as cognitive/behavioral defects and neurodegenerative diseases 
[2], and thus are important topics for biomedical investigation. Brain volumes are traits 
that are highly heritable, and the genetic factors play key roles in brain volume changes 
and account for more than 50% of the variations in brain volume among individuals [9–
13]. Many studies including GWAS have been performed and identified multiple SNPs 
correlated with human brain volumes and structures [2, 10, 13–15]. Most of the prior 
studies, however, were based on small sample sizes and thus might have limited statisti-
cal power to identify all the relevant SNPs, especially those with small effect sizes [10, 
23–27]. Recently, there have been multiple landmark GWAS projects of large sample 
sizes (more than 15,000 participants) to identify SNPs that are associated with different 
brain volumetric measures [2, 13] In this study, we aimed to harness the power of these 
SNP-trait association data which was generated from large-scale studies to reveal genes 
highly associated with brain volume differences. We used tissue-specific transcriptomic 
analysis (SPrediXcan) [18] and identified 10 genes that are highly associated with ICV 
and TBV. Our study, on one hand, confirmed SPrediXcan as a powerful tool to identify 
genes that are associated with complex traits. On the other hand, we conducted post-
hoc pathway and network analysis to provide insights into transcriptomic regulation and 
profile underlying brain volumetric phenotypes. Based on our results, further investiga-
tions can be performed to gain deeper understanding into the biological mechanisms 
of brain structure and function, and subsequently impact the study of neurological and 
psychiatric disorders.

Our study has faced a few challenges and limitations. First, our analysis depends on the 
GWAS summary data that were generated by other studies. Since SPrediXcan requires 
the inputs to have a strict format, we worked with the GWAS summary data meeting 
this requirement. This was somewhat challenging because not all the GWAS studies 
shared their summary data satisfying SPrediXcan’s requirement. On the other hand, the 
traits studied in the UKB and ENIGMA studies were related but not exactly the same, 
and thus we would not be able to perform a replication study. Instead, we focused on 
analyzing two closely related brain volume measures ICV and TBV [2, 13].

Second, we used the GTEx data which was from healthy samples. Thus, this study 
aimed to detect genes that play important roles in the normal development process of 
the brain. In order to study genes that are related to pathological changes in the brain, an 
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interesting future direction could be to perform similar analyses on the disease-related 
biobank data such as those from the PsychENCODE consortium (https:// psych encode. 
org/).

Third, in this work, we examined only the PrediXcan models trained by the elastic-
net method. An interesting future direction would be to include also the MASHR-based 
PrediXcan models and perform a more comprehensive comparative study. For example, 
we can benchmark these models, tune relevant parameters, and seek for an improved 
PrediXcan model that identifies more genes.

Fourth, this work is a pure bioinformatics study, and thus no molecular experiments 
are performed to validate the findings. However, our goal is to identify promising genes 
for subsequent replication study in independent cohorts as well as form new hypoth-
esis for molecular validation. For example, one future direction could be to conduct 
knockout experiments in mice with some of the genes we discovered, especially with the 
gene that has not been heavily studied before (e.g., FAM215B). By knocking out these 
genes, alone or in combination with the others, one can observe the changes in brain 
volumes in mice. Another direction could be to perform molecular experiments (e.g., 
RNA sequencing, Chromatin immunoprecipitation sequencing, mass spectrometry) on 
relevant brain tissues. These investigations will further evaluate and reveal the under-
lying molecular networks of how these genes function and how they contribute to the 
changes of brain volumes and structures.

Conclusions
We performed tissue-specific transcriptomic association analyses using S-PrediXcan 
on the UKB and ENIGMA2 GWAS summary data. We identified 10 genes with vary-
ing mediating effects on both total brain volume (TBV) and intracranial volume (ICV) 
across thirteen GTEx brain tissues. We examined our results by comparing them to the 
findings of prior GWAS studies and found that 8 out of 10 genes were correlated with 
cognitive and behavioral deficits in humans. Moreover, 9 out of 10 genes were found to 
be associated with TBV in another study using a different gene-based association analy-
sis [2]. In the current study, we also included further post-hoc analyses to reveal possible 
biological and cellular mechanisms as well as the interaction network of proteins coded 
by the discovered genes. These identified genes, coupled with their tissue specific find-
ings, warrant further investigation in independent cohorts. Molecular validation is also 
needed, to better understand molecular mechanisms of the brain and brain disorders 
such as Alzheimer’s diseases, and ultimately to potentially aid in therapeutic strategy 
development.

Methods
Data and materials

We performed our analyses using the imaging GWAS summary data from two landmark 
studies (UKB [2] and ENIGMA [13]), to leverage the statistical power provided by their 
large sample sizes. Both studies have yielded many imaging genetic associations that 
could not be detected with smaller sample sizes.

In the first study, we analyzed the GWAS summary data generated by Zhao et  al. 
[2], where they aimed to identify SNPs associated with multiple brain volumetric 

https://psychencode.org/
https://psychencode.org/
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phenotypes from the UKB cohort. Although previous similar studies were done with 
the same purposes, they all analyzed data sets with small sample size, and might have 
missed SNP-phenotype associations with small effect sizes [10, 23–27]. Zhao et  al.’s 
study harnessed the large sample size of the UKB cohort (n = 19,629) with the MRI data 
provided for each individual. They downloaded and processed MRI data to generate 101 
different imaging traits including regional and total brain volumes (TBV) [28, 29]. They 
performed GWAS on the 101 imaging traits using 8,944,375 genetic variants. From this 
study, we used GWAS summary data on TBV—which is one of the 101 traits. GWAS 
summary data from this study may be found at: https:// github. com/ BIG- S2/ GWAS.

We also performed our analyses using the GWAS summary data generated by Hibar 
et  al. [13] from the ENIGMA consortium. This study was a volumetric meta-analytic 
GWAS which aimed to identify SNPs associated with seven subcortical brain structures 
and intracranial volume (ICV). The volume measures investigated in this study were 
obtained from structural MRI data (sample size n = 30,717), and then meta-analytic 
GWAS was performed on these volumetric phenotypes. From these results, we used 
only the GWAS summary data for ICV since it is a relevant brain volume trait that is 
similar to TBV mentioned above.

Summary statistics from both UKB and ENIGMA studies provide the required com-
ponents for subsequent analyses with S-PrediXcan. These include SNP IDs, effect/non-
effect alleles, standardized regression coefficients (BETA) and the associated p-values.

Tissue‑specific transcriptome analysis by using S‑PrediXcan

S-PrediXcan is a method that estimates the mediating effects of gene expression levels 
on phenotypes using only GWAS summary data [18]. We applied S-PrediXcan to thir-
teen GTEx brain tissues [21] and two brain volume phenotypes (TBV and ICV). Input 
materials for our S-PrediXcan analysis included the TBV GWAS summary statistics 
from the UKB cohort (n = 19,629) [2] and the ICV GWAS summary statistics from the 
ENIGMA2 cohort (n = 30,717). All the genetic variants from the two GWAS summary 
statistics data were used in this study [13]. Another required input was the trained Pre-
diXcan models [17] using elastic-net from the GTEx transcriptomes of thirteen brain 
tissues (GTEx version 8) [18], where each tissue-specific model predicts gene expression 
level in the corresponding brain tissue using relevant SNPs. In this work, we examined 
the trained PrediXcan models using the elastic-net method, while an interesting future 
direction would be to include also the MASHR-based PrediXcan models and perform 
a more comprehensive comparative study. The PrediXcan models and SNP covariances 
were downloaded from http:// predi ctdb. org/. All the inputs were integrated through 
following the instructions in the “S-PrediXcan Input data” section available at https:// 
github. com/ hakyi mlab/ MetaX can. Briefly, the MetaXcan repository was cloned to the 
local computer, and then the High-Level S-PrediXcan Script was run with the specified 
paths directed toward the corresponding input files. During the analyses, each of the 
thirteen brain tissue-specific prediction models was applied to predict genes that are 
associated with our interested GWAS traits (ICV and TBV).

S-PrediXcan was performed to integrate GTEx PrediXcan models with GWAS 
summary statistics data of our interested traits: (1) TBV from UKB and (2) ICV from 

https://github.com/BIG-S2/GWAS
http://predictdb.org/
https://github.com/hakyimlab/MetaXcan
https://github.com/hakyimlab/MetaXcan
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ENIGMA2; and the goal was to identify tissue-specific transcriptomic variations com-
monly associated with TBV and ICV. The first S-PrediXcan analysis was done with the 
GWAS summary data from UKB cohort to identify genes that are highly associated with 
TBV. After that, the second S-PrediXcan analysis was performed with the GWAS sum-
mary data from the ENIGMA2 cohort, where our goal was to determine which TBV-
associated genes are also significantly associated with ICV. The results were reported 
using a false discovery rate (FDR) threshold < 0.05 [30]. The schematic design of this 
work is shown in Fig. 1.

Comparison with previous studies

The discovered genes were manually searched in the reports of previous relevant studies. 
The purpose of these searches was to determine which genes were previously reported 
to be associated with brain volumes and structures as well as associated with different 
cognitive traits and brain disorders. Another purpose was to confirm the validity of our 
analyses and also to point out which of the genes we discovered had not been reported 
in previous studies. One of the studies that we compared with was the gene-based asso-
ciation analysis of the original UKB GWAS where they reported 157 genes that were 
highly associated with different brain regional measures. We also manually checked our 
discovered genes in the NHGRI-EBI GWAS catalog (https:// www. ebi. ac. uk/ gwas/)-a 
database that contains prior GWAS findings. We wanted to check whether our discov-
ered genes are correlated with any of the following cognitive deficits and mental-health 
related traits: neurodegenerative diseases, neuropsychiatric disorders, neuroticism, 
intellectual performance, reaction time, cognitive function, educational attainment and 
mathematical ability.

Molecular and biological pathway investigations of the reported genes

To better understand the molecular mechanisms and biological pathways associated 
with our discovered genes, additional analyses were performed. The protein interaction 
network was obtained using STRING (https:// string- db. org/). Pathway enrichment anal-
ysis was conducted using https:// maaya nlab. cloud/ Enric hr/ to identify pathways that 
were enriched in our gene findings. We examined the pathways available in two different 
tracks (molecular function and biological pathway) of the Gene Ontology (GO) database.
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