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Abstract 

Background:  In the context of a binary classification problem, the optimal linear 
combination of continuous predictors can be estimated by maximizing the area under 
the receiver operating characteristic curve. For ordinal responses, the optimal predic-
tor combination can similarly be obtained by maximization of the hypervolume under 
the manifold (HUM). Since the empirical HUM is discontinuous, non-differentiable, and 
possibly multi-modal, solving this maximization problem requires a global optimization 
technique. Estimation of the optimal coefficient vector using existing global optimiza-
tion techniques is computationally expensive, becoming prohibitive as the number of 
predictors and the number of outcome categories increases.

Results:  We propose an efficient derivative-free black-box optimization technique 
based on pattern search to solve this problem, which we refer to as Spherically Con-
strained Optimization Routine (SCOR). Through extensive simulation studies, we dem-
onstrate that the proposed method achieves better performance than existing meth-
ods including the step-down algorithm. Finally, we illustrate the proposed method to 
predict the severity of swallowing difficulty after radiation therapy for oropharyngeal 
cancer based on radiation dose to various structures in the head and neck.

Conclusions:  Our proposed method addresses an important challenge in combin-
ing multiple biomarkers to predict an ordinal outcome. This problem is particularly 
relevant to medical research, where it may be of interest to diagnose a disease with 
various stages of progression or a toxicity with multiple grades of severity. We provide 
the implementation of our proposed SCOR method as an R package, available online at 
https://​CRAN.R-​proje​ct.​org/​packa​ge=​SCOR.

Keywords:  Area under the curve, Classification, Global optimization, Hypervolume 
under the manifold, Pattern search, ROC curve
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Background
In precision medicine, there is great interest in utilizing multiple biomarkers or continu-
ous variables to categorize patients based on disease stage, predict treatment response, or 
anticipate the potential severity of toxicity. To address this challenge, various classification 
methods have been proposed. Existing model-based approaches to the classification prob-
lem include logistic regression and linear discriminant analysis. As an alternative to model-
based methods, [1, 2] focused on classifying different subgroups based on maximization of 
the area under the receiver operating characteristic (ROC) curve (AUC). In its simplest form, 
the ROC curve can be interpreted as the probability of detection as a function of the false 
alarm rate, so higher values of the AUC signify higher average hit rates over different pos-
sible values of the false alarm rate. In the field of medical science, the AUC is widely used as 
a criterion to combine multiple diagnostic test results or other continuous predictor values 
[3]. However, the ROC curve does not have an exact analytical expression, so estimating the 
AUC and finding optimal predictor combinations to maximize its value remains challenging.

In the case of a binary outcome, various non-parametric estimates of the AUC have been 
proposed. For example, [2] estimated the AUC using Mann-Whitney U statistics, while [4] 
proposed a smooth estimate obtained using a sigmoid function. However, with increasing 
sample size, these objective functions become challenging to maximize. In order to handle 
this problem for large datasets, [5] proposed the min-max method, which only considers 
the linear combination of two extreme biomarkers in estimating the AUC, and therefore 
maintains the same computation time for any given sample size. For multi-categorical out-
comes, the hypervolume under the manifold (HUM), also known as the volume under the 
ROC surface, has been proposed as an analogue to the AUC [6]. For the three-category out-
come scenario, various estimates of the HUM have been proposed [7–9]. In the multi-cate-
gory setting, [10] proposed a method to estimate the optimal combination vector when the 
outcomes of the biomarkers follow a normal distribution. However their proposed method 
was noted to under-perform when the biomarker values are non-normal [11, 12]. In the 
presence of multiple biomarkers, to avoid the computational burden of simultaneous esti-
mation of the combination vector, [2] proposed the step-down algorithm. However, this 
strategy of maximizing the HUM estimate by estimating one coordinate at a time can work 
poorly in higher dimensional settings. More recently, [13] proposed an empirical estimate 
of HUM (EHUM) for the three-category outcome scenario, but because of the lack of con-
cavity of most of the proposed estimates, maximization of the objective functions remained 
challenging. To overcome this computational burden, under the assumption of normality, 
[14] proposed a penalized and scaled stochastic distance based method. Finally, [11] pro-
posed an efficient approach which relies on upper and lower bounds (ULBA).

As discussed above, most of the proposed estimates of the HUM are discontinuous and 
non-differentiable functions of the combination coefficients, and potentially have multiple 
maximums. Therefore, one of the most vital aspects regarding their performance remains 
the maximization step. This problem becomes more challenging with increasing sample 
size, number of biomarkers, and the number of outcome categories. For simple cases, 
even in the presence of multiple local maximums, most of the optimization algorithms 
used in practice can still find the best solution. But, as the maximization problem gets 
harder, it becomes more difficult to find the global maximum out of all local maximums. 
Thus, performance becomes highly dependent on the optimization algorithm used for the 
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maximization. When maximizing discontinuous, non-differentiable, multi-modal objec-
tive functions, derivative-free non-convex optimization techniques are critical to ensure 
a good solution [15]. However, to the best of our knowledge, none of the previous articles 
proposing HUM estimates considered using global optimization techniques for maximiz-
ing the corresponding objective function. Our goal in the current work is both to point 
out the limitation of existing methods for this problem, and to propose a global optimiza-
tion method that offers improved performance in the prediction of ordinal outcomes.

Global optimization using pattern search

We now give a more precise mathematical description of the problem of interest. Sup-
pose β denotes the d-dimensional linear combination vector to be estimated, and f (β) 
denotes the empirical value of the HUM. Unfortunately, f (β) is not identifiable since 
f (β) = f (aβ) for any scalar a > 0 [5]. This means that we cannot simply optimize f (β) 
over the unconstrained space β ∈ Rd . In order to address this non-identifiability, instead 
of maximizing f (β) over Rd , we add an extra constraint ||β|| = 1 where || · || denotes the 
Euclidean norm. So the problem can be re-defined as

where f (β) can be discontinuous (as is the case for EHUM), non-differentiable, and 
multi-modal. Note that here the coordinates β must lie on the surface of a unit sphere. 
Due to the possibly multi-modal nature of f (β) , global optimization tools are preferred 
over convex optimization methods.

There are a number of existing optimization methods, which we summarize briefly here. 
For maximizing any multi-modal function, global optimization techniques such as the 
genetic algorithm [16] and simulated annealing [17] have been shown to yield better results 
as compared to convex optimization methods such as the interior-point algorithm [18] or 
sequential quadratic programming [19]. The Nelder-Mead algorithm [20], also known as the 
simplex method, is a heuristic derivative-free optimization technique that has been widely 
applied to statistical problems, and serves as the default option for the optim function in R 
and the basis of fminsearch in MATLAB. To improve on the convergence of these algo-
rithms, [21] proposed pattern search (PS), where possible solution points around the current 
solution are found using an adaptive step-size vector. Importantly, none of these algorithms 
were specifically designed to handle global optimization over a spherical parameter space.

To minimize a non-convex function (or, equivalently, maximize a non-concave func-
tion) globally over a hyper-rectangular parameter space, [22] proposed a modified ver-
sion of global pattern search called Recursive Modified Pattern Search (RMPS). This 
approach, which is discussed in detail in the Methods section, has desirable properties in 
terms of computational scalability and the fact that many of the operations can be per-
formed in parallel. Subsequently, [23, 24] extended RMPS to problems where the param-
eter space is given by a collection of simplexes.

In this article we develop an algorithm called ‘Spherically Constrained Optimization Rou-
tine’ (SCOR) which utilizes the basic principle of the RMPS algorithm but accommodates 

(1)

maximize : f (β), where β = (β1, . . . ,βd)

subject to :
d

i=1

β2
i = 1,β ∈ Rd ,
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the constraint of a spherical parameter space. Based on an extensive set of simulation stud-
ies, the computational efficiency of the proposed algorithm is established and its perfor-
mance is compared with existing optimization techniques. We show that using SCOR to 
maximize EHUM or ULBA results in noticeable improvement over the Nelder-Mead, step-
down and min-max algorithms. Finally, we apply our proposed algorithm to derive a com-
bination score which best predicts the severity of dysphagia, or difficulty swallowing, based 
on the mean radiation dose delivered to various structures in the head and neck during 
cancer treatment.

Prior work

In this section, we describe existing methods of estimating the optimal coefficient vector 
for combining biomarkers. Consider a study with M possible outcome categories. Let 
X1, . . . ,XM denote the d-dimensional observed biomarker values for the M outcome cate-
gories. Each coordinate of Xj denotes the value of a biomarker, j = 1, . . . ,M , where d is the 
number of biomarkers. Suppose Xj ∼ Fj for j = 1, . . . ,M where Fj denotes a multivariate 
continuous distribution. Now the linear combination of the biomarkers corresponding to 
the j-th outcome category is given by βT

Xj =
∑d

k=1 βkXjk , where β = (β1, . . . ,βd) denotes 
the combining coefficient vector. Without loss of generality, assuming that the higher value 
of the combination value corresponds to the higher outcome category, the HUM [6], which 
measures the diagnostic accuracy, is given by D(β) = P(βT

XM > · · ·βT
X2 > βT

X1) . In 
order to distinguish the outcome categories, our goal is to find the optimal combination 
coefficient vector β0 for which D(β) is maximized. So, β0 = arg max

||β||=1

D(β) . Note that D(β) 

should be maximized over all possible coefficient vectors of norm 1 to avoid the issue of 
non-identifiability. When X1, . . . ,XM follow multivariate normal distributions, under a few 
regularity conditions, the value of β0 can be derived [25]. However, without any distribu-
tional assumption on X1, . . . ,XM , the value of β0 cannot be analytically obtained.

Estimates of the HUM

We now review estimates of the HUM proposed in the literature. Essentially, these 
approaches provide different options for how to formulate the objective function.

Empirical hypervolume under the manifold (EHUM)

In order to estimate the optimal coefficient vector, [13] proposed maximizing the empiri-
cal estimate of the HUM from the given sample. Suppose the sample is denoted by 
{Xjij : j = 1, . . . ,M, ij = 1, . . . , nj} , so the total sample size is n =

∑M
j=1 nj . Then the empir-

ical estimate of HUM is given by

Here I(·) denotes the indicator function. The optimal combination coefficient vector 
obtained by maximizing DE(β) is given by β̂E = arg max

||β||=1

DE(β) . Note that DE(β) can be 

multi-modal. The discontinuity and non-differentiablity of DE(β) pose additional chal-
lenges in maximizing it using existing optimization methods.

DE(β) =
1

n1n2 · · · nM

n1∑

i1=1

n2∑

i2=1

· · ·
nM∑

iM=1

I(βT
XM,iM > · · · > βT

X2i2 > βT
X1i1).



Page 5 of 20Das et al. BMC Bioinformatics          (2022) 23:436 	

Upper and lower bound approach (ULBA)

In order to alleviate the computational burden of maximizing DE(β) , [11] proposed 
alternative objective functions which can be maximized more easily. [11] showed that

where PA(β) and PM(β) are defined by

[11] proposed that instead of maximizing DE(β) , we can either maximize PA(β) or 
PM(β) , as they are much easier to solve. Since they showed that the solution obtained by 
maximizing PA(β) yields better results than that obtained using PM(β) , in this paper we 
consider the optimal coefficient combination vector using ULBA as given by 
β̂ULBA = arg max

||β||=1

PA(β) . Despite the simpler form of PA(β) compared to DE(β) , this 

function is still discontinuous with possibly multiple modes.

Existing techniques for estimating the optimal value of β beta

Due to the multi-modal nature of the objective functions discussed above, it is challeng-
ing to optimize the combination coefficient vector β simultaneously. In Additional file 1 
Section A, we provide background on general-purpose global optimization techniques 
including the genetic algorithm (GA), simulated annealing (SA), and pattern search (PS) 
which can be applied here. In the current section, we focus on approaches designed spe-
cifically for estimation of the combination vector developed in the past few decades.

[2] proposed the step-down algorithm for combining multiple biomarkers. Although 
the method was first proposed for the binary categorical outcome case, this principle 
can also be used in scenarios with more than two categorical outcomes [14]. In the step-
down approach, the biomarkers are first ordered based on their individual EHUM value. 
Then the coefficient of the biomarker with highest EHUM value is taken to be 1. Then 
at each step one additional biomarker is included and its coefficient is estimated. Thus, 
the coefficients of the biomarkers are estimated one at a time. A detailed description of 
the step-down algorithm is provided in Additional file 1 Section B.1. [11] used this algo-
rithm to maximize the upper or lower bound of HUM, namely PM or PA . [5] proposed 
the min-max (MM) principle in the context of a binary outcome, where, corresponding 
to each vector of biomarkers of length d, only the maximum and the minimum values of 
those d values are used to estimate the combination coefficient vector. The estimation 
procedure using the MM principle is provided in detail in Additional file 1 Section B.2.

Results
We propose a new optimization approach, Spherically Constrained Optimization Rou-
tine (SCOR), to address the challenge of identifying the optimal linear combination of 
input variables to predict an ordinal outcome. For a detailed description of our efficient 
derivative-free black-box optimization technique, please see the Methods section below.

max{0, (M − 1)PA(β)− (M − 2)} ≤ D(β) ≤ PM(β),

PA(β) =
1

M − 1

M−1∑

j=1

P(βT
Xj+1 > βT

Xj),PM(β) = min
1≤j≤M−1

P(βT
Xj+1 > βT

Xj).
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Simulation study

In this section, we compare the performance of SCOR with that of the Nelder-Mead 
(NM), step-down, and min-max methods in the context of simulated data. Under dif-
ferent simulation scenarios, we estimate the optimal combination vector by maximiz-
ing the EHUM and ULBA objective functions using each of these four approaches. We 
measure performance in terms of the EHUM objective function value DE(·) at the esti-
mated optimal solution, evaluated on a separate test data set. The SCOR algorithm is 
implemented in MATLAB 2016b. NM is an unconstrained optimization technique, so in 
applying this algorithm, we set the first parameter value to be either 1 or -1, whichever 
maximizes the individual EHUM if we set other parameter values to be 0. Then, the rest 
of the parameters are estimated by maximizing EHUM and ULBA using NM, performed 
using the fminsearch function in MATLAB 2016b. For the step-down and min-max 
algorithms also, we use the fminsearch function with default options.

We consider three simulation scenarios, two based on the normal distribution, and 
one based on the Weibull distribution (to illustrate performance in the context of non-
normal data). Among the two normal distribution scenarios considered, in the first one, 
we simulate covariates that are not correlated, while in the second, the covariates have 
non-zero correlation. For each simulation scenario, we consider settings with M = 2 and 
M = 3 ordinal outcomes. The number of biomarkers is taken to be d = 5, 10, or 20. In 
each case, the d biomarkers are generated from the corresponding normal or Weibull 
distribution. For the case of M = 2 categories, we set the sample sizes for each category 
to be 15, 30, and 60. For the M = 3 category case, we take the sample sizes of each cat-
egory to be 15 and 30.

Scenario 1: For the i-th disease category, the values of the biomarkers are simulated 
from the d-variate normal distribution for d = 5, 10, or 15 with mean µi =

(
µi1, . . . ,µid

)
 , 

and covariance matrix �i = Id , where µij = (−1)j ∗ i[1+ 0.1(j − 1)] , for j = 1, . . . , d , 
i = 0, 1 (for the two category outcome case) and i = 0, 1, 2 (for the three category out-
come case).

Scenario 2: In order to explore the relative performance of all methods in cases with 
correlated predictors, here we consider the same model as Scenario 1 except we take 
�i = (ast)d×d where ast = (0.5)|s−t| for s, t = 1, . . . , d and i = 0, 1 (for the two category 
outcome case) and i = 0, 1, 2 (for the three category outcome case).

Scenario 3: Here the values of the biomarkers are generated from the multivariate 
Weibull distribution. For the i-th disease category, the j-th biomarker follows a univari-
ate Weibull distribution with scale parameter �i , shape parameter kj and location param-
eter γj . We take �i = i + 1, kj = 0.5 ∗ j, γj = (−5)j for j = 1, . . . , d , i = 0, 1 (for the two 
category outcome case) and i = 0, 1, 2 (for the three category outcome case).

For any given scenario using any of the methods considered, we first estimate the bio-
marker coefficient vector maximizing EHUM and ULBA. We then generate a new sam-
ple of the same size under the same simulation design. The EHUM values reported (i.e., 
the objective function value DE(·) ) are obtained using the biomarker coefficient vectors 
estimated on the training data on the new test set. We adopt this strategy to ensure that 
the performance estimates do not reflect overfitting to the training data. We report the 
mean EHUM at the estimated optimal solutions using the SCOR, NM, step-down and 
min-max algorithms for the different simulation scenarios over 100 replications.
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In Table 1, we provide the results for the two category outcome setting for sample 
sizes 15 and 30 per group and for the three category outcome setting with sample size 
15 per group. The results for the two category outcome setting with sample size 60 
and for the three category outcome setting with sample size 30 are provided in the 
Additional file  1: Table  S3. SCOR outperforms both NM and step-down for all the 
scenarios considered. SCOR also outperforms the min-max method for all scenar-
ios except for a few cases for Scenario 3 with higher sample sizes; however, in those 
cases, the SCOR performance is quite close to that obtained using min-max. As the 
dimension d of the biomarker vector increases, estimates by SCOR tend to improve, 
while the step-down algorithm tends to underperform. As the dimension d increases, 
SCOR tends to outperform step-down by a higher margin. In general, the SCOR esti-
mates have lower standard errors compared to other methods, indicating more stable 
estimates, which is expected when using a global optimization approach.

In Additional file 1 : Table S2, we compare the performance of SCOR with general-
purpose global optimization algorithms based on optimization of five benchmark 
functions on the unit-spherical parameter space with dimensions d = 5, 20, 50, 100, 
and 500, and show that in general SCOR outperforms existing optimization algo-
rithms, with greatly reduced computation time. Specifically, using SCOR, we obtain 
an improvement in computation time up to 67 fold over pattern search, up to 43 fold 
over simulated annealing, and up to 38 fold over the genetic algorithm.

Theoretical properties of the estimator obtained from SCOR depend on the choice 
of objective function. When using EHUM as the objective, β̂E = arg max

||β||=1

DE(β) , so 

obtaining the optimal β requires finding the set of values that maximize DE(β) . Since 
this objective may be multi-modal, it is difficult to maximize in practice, creating the 
need for the proposed SCOR procedure. However, from a theoretical point of view, 
the properties of the estimator are independent of the choice of algorithm, meaning 
that existing work on the theoretical properties EHUM can be applied to our results 
as well. We can therefore rely on previous theoretical results establishing that the 
empirical estimate of HUM is consistent in probability for the true HUM and asymp-
totically normal [6], while β̂E is consistent and asymptotically normal under certain 
regularity conditions [13]. Similar theoretical results for ULBA do not exist. Although 
we found that in practice maximizing PA(β) resulted in good performance, likely 
because its simpler form is easier to maximize than DE(β) , the resulting estimate is a 
lower bound on the true HUM, and may be strictly lower under certain conditions. 
Additionally, to show how the mean squared error (MSE) of the estimated optimal 
coefficient vector β obtained using SCOR changes with sample size, we provide the 
results of a simulation study in Table S4 of Additional file 1 Section F. We note that as 
the sample size increases, the MSE decreases for both the ULBA and EHUM objective 
functions.

The variance of the estimates for the coefficients and the HUM itself are challenging 
to estimate in practice [6, 13]. We therefore recommend the use of bootstrap resam-
pling to obtain empirical confidence intervals for both the coefficients and the HUM. 
For the empirical HUM estimate, the bootstrap standard error ŝeB can be obtained 
from the bootstrap samples, and the resulting 100(1− α) % confidence interval can 
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Table 1  Performance comparison for two and three ordinal outcomes, where each class has sample 
size 15 and 30 for the two category case, and 15 for the three category case

The empirical hypervolume under manifolds (EHUM) and upper and lower bound approach (ULBA) objective functions are 
maximized by the proposed Spherically Constrained Optimization Routine (SCOR) algorithm and the existing Nelder-Mead 

Scenarios d Method Scenario 1 Scenario 2 Scenario 3

ULBA EHUM ULBA EHUM ULBA EHUM

M = 2,

N = (15, 15)

5 SCOR 0.928 
(0.06)

0.928 
(0.06)

0.974 
(0.04)

0.974 
(0.04)

0.900 
(0.08)

0.900 (0.08)

NM 0.806 (0.16) 0.806 (0.16) 0.889 (0.14) 0.889 (0.14) 0.760 (0.11) 0.760 (0.11)

Step-down 0.538 (0.30) 0.538 (0.30) 0.536 (0.31) 0.536 (0.31) 0.866 (0.08) 0.866 (0.08)

Min-max 0.691 (0.10) 0.691 (0.10) 0.711 (0.13) 0.711 (0.13) 0.839 (0.08) 0.839 (0.08)

10 SCOR 0.972 
(0.04)

0.972 
(0.04)

0.984 
(0.03)

0.984 
(0.03)

0.953 (0.06) 0.953 (0.06)

NM 0.864 (0.15) 0.864 (0.15) 0.834 (0.18) 0.834 (0.18) 0.866 (0.09) 0.866 (0.09)

Step-down 0.503 (0.28) 0.503 (0.28) 0.581 (0.32) 0.581 (0.32) 0.971 (0.05) 0.971 (0.05)

Min-max 0.881 (0.07) 0.881 (0.07) 0.860 (0.08) 0.860 (0.08) 0.982 
(0.02)

0.982 (0.02)

20 SCOR 0.971 
(0.04)

0.971 
(0.04)

0.979 
(0.04)

0.979 
(0.04)

0.958 (0.06) 0.958 (0.06)

NM 0.805 (0.25) 0.805 (0.25) 0.692 (0.26) 0.692 (0.26) 0.930 (0.07 0.930 (0.07

Step-down 0.472 (0.33) 0.472 (0.33) 0.472 (0.32) 0.472 (0.32) 0.975 (0.04) 0.975 (0.04)

Min-max 0.922 (0.05) 0.922 (0.05) 0.909 (0.06) 0.909 (0.06) 0.997 
(0.01)

0.997 (0.01)

M = 2,

N = (30, 30)

5 SCOR 0.950 
(0.04)

0.950 
(0.04)

0.982 
(0.03)

0.982 
(0.03)

0.923 
(0.04)

0.923 (0.04)

NM 0.931 (0.03) 0.931 (0.03) 0.970 (0.03) 0.970 (0.03) 0.773 (0.10) 0.773 (0.10)

Step-down 0.596 (0.28) 0.596 (0.28) 0.590 (0.30) 0.590 (0.30) 0.893 (0.06) 0.893 (0.06)

Min-max 0.804 (0.10) 0.804 (0.10) 0.873 (0.12) 0.873 (0.12) 0.865 (0.05) 0.865 (0.05)

10 SCOR 0.990 
(0.01)

0.990 
(0.01)

0.995 
(0.01)

0.995 
(0.01)

0.989 
(0.02)

0.989 (0.02)

NM 0.978 (0.02) 0.978 (0.02) 0.983 (0.03) 0.983 (0.03) 0.872 (0.08) 0.872 (0.08)

Step-down 0.546 (0.32) 0.546 (0.32) 0.473 (0.32) 0.473 (0.32) 0.982 (0.03) 0.982 (0.03)

Min-max 0.926 (0.05) 0.926 (0.05) 0.945 (0.06) 0.945 (0.06) 0.982 (0.02) 0.982 (0.02)

20 SCOR 0.991 
(0.01)

0.991 
(0.01)

0.984 
(0.10)

0.984 
(0.10)

0.985 (0.02) 0.985 (0.02)

NM 0.991 (0.01) 0.991 (0.01) 0.992 (0.01) 0.992 (0.01) 0.929 (0.05) 0.929 (0.05)

Step-down 0.546 (0.32) 0.546 (0.32) 0.515 (0.31) 0.515 (0.31) 0.984 (0.04) 0.984 (0.04)

Min-max 0.961 (0.04) 0.961 (0.04) 0.972 (0.04) 0.972 (0.04) 0.997 
(0.01)

0.997 (0.01)

M = 3,

N = (15, 15, 15)

5 SCOR 0.891 
(0.10)

0.890 
(0.10)

0.955 
(0.08)

0.955 
(0.08)

0.722 
(0.01)

0.719 (0.10)

NM 0.829 (0.11) 0.837 (0.11) 0.898 (0.13) 0.902 (0.13) 0.484 (0.12) 0.485 (0.12)

Step-down 0.358 (0.32) 0.356 (0.32) 0.398 (0.38) 0.398 (0.38) 0.638 (0.12) 0.644 (0.12)

Min-max 0.582 (0.15) 0.582 (0.15) 0.703 (0.23) 0.703 (0.23) 0.582 (0.10) 0.582 (0.10)

10 SCOR 0.978 
(0.03)

0.967 
(0.10)

0.985 
(0.03)

0.986 
(0.03)

0.938 
(0.06)

0.942 (0.05)

NM 0.916 (0.11) 0.907 (0.14) 0.912 (0.19) 0.925 (0.19) 0.664 (0.13) 0.664 (0.13)

Step-down 0.354 (0.34) 0.349 (0.34) 0.329 (0.36) 0.329 (0.36) 0.902 (0.08) 0.903 (0.08)

Min-max 0.825 (0.09) 0.824 (0.09) 0.823 (0.13) 0.823 (0.13) 0.887 (0.05) 0.887 (0.05)

15 SCOR 0.977 
(0.03)

0.927 
(0.22)

0.985 
(0.02)

0.945 
(0.20)

0.952 (0.06) 0.951 (0.06)

NM 0.935 (0.18) 0.888 (0.27) 0.914 (0.20) 0.853 (0.29) 0.795 (0.09) 0.795 (0.09)

Step-down 0.297 (0.35) 0.308 (0.35) 0.322 (0.35) 0.322 (0.35) 0.935 (0.08) 0.935 (0.08)

Min-max 0.895 (0.06) 0.895 (0.06) 0.889 (0.08) 0.889 (0.08) 0.964 
(0.03)

0.964 (0.03)
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be estimated as ĤUM± zα/2ŝeB , where zα/2 represents the upper α/2 quantile of the 
standard normal distribution [6]. A similar procedure can be used to obtain confi-
dence intervals for β̂.

Application to the prediction of swallowing difficulty following radiation therapy

In this section, we illustrate the SCOR method with an application to data from a study 
of swallowing difficulty, or dysphagia, in patients treated with radiation therapy for oro-
pharyngeal cancer. Outcomes of observational studies and clinical trials in cancer are 
commonly defined as categorical or ordinal variables, and standardized systems have 
been adopted for both response and toxicity assessment in this framework. Specifically, 
the standard definition of response to cancer therapy in solid tumors includes four cat-
egories reflecting the treatment efficacy: complete response, partial response, stable 
disease, and progressive disease [26]. Toxicities experienced as a consequence of treat-
ment also follow a standard definition for classification and grading, the Common Ter-
minology for Criteria for Adverse Events (CTCAE) [27]. The categories on this scale are 
0 for no symptoms, 1 for mild, 2 for moderate, 3 for severe, 4 for life-threatening, and 5 
for death. Similar scales have been developed for outcomes of interest in specific can-
cer types: in particular, the DIGEST scale measures swallowing difficulty using a similar 
grading scale to that of CTCAE [28, 29].

In this case study, we analyze data derived from a study of swallowing difficulties, 
quantified using the DIGEST scale, as a result of radiation therapy for oropharyngeal 
cancer [30]. Radiation therapy is commonly used to treat oropharyngeal cancer [31]. 
Although this treatment is critical to ensure control of the tumor, radiation to structures 
in the head and neck related to swallowing can lead to loss of function, and ultimately 
reduced loss of quality of life or serious complications, such as aspiration-related pneu-
monia [32, 33]. Understanding the impact of radiation dose to specific structures on 
swallowing outcomes can inform the development of radiation treatment plans designed 
to minimize dose to critical structures [34].

In our dataset, radiation dose is characterized as the mean dose delivered to 13 criti-
cal structures. Here we focus on the 87 subjects with no missing values for dose. The 
response variable describing swallowing difficulty was quantified using the DIGEST 
scale; to ensure sufficient sample size in each class, we collapsed grades 2-4 into a single 
group [28]. The sample sizes per class are then 29 subjects with no dysphagia (0 on the 
DIGEST scale), 27 with mild dysphagia (1 on the DIGEST scale), and 30 with moderate 
to severe dysphagia (2-4 on the DIGEST scale). Since some of the predictors were highly 
correlated, we performed a screening step to filter out the most highly correlated using a 
greedy approach, with variables that had the highest average correlation removed from 
the set until all pairwise correlations were less than 0.8. After screening out 4 variables, 
we had 9 remaining predictors: mean radiotherapy dose to cricopharyngeal muscle, 

(NM), step-down, and min-max algorithms. The estimated biomarker coefficient vectors are then used to calculate the 
EHUM value on a new dataset of the same size generated from the corresponding model. The entire procedure is repeated 
100 times, resulting in 100 simulated training and test data sets, and the mean EHUM objective function values on the 
test data are reported, with the standard error in the parentheses. The result for the method with the best performance is 
marked in bold

Table 1  (continued)
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esophagus, glottic area, inferior pharyngeal constrictor (PC), ipsilateral anterior digas-
tric muscle (ADM), middle PC, mylohoid muscle, superior PC, and intrinsic tongue 
muscles.

To illustrate the relative performance of the SCOR, step-down and min-max tech-
niques, we compute the estimated combination coefficients maximizing the ULBA and 
EHUM criteria using each method. The EHUM value at those solutions are then evalu-
ated. We also compute the optimal cut-points to categorize the combination scores 
(obtained by multiplying the optimal coefficient vector with the biomarker values) 
using Youden’s index [35]. Youden’s index is defined as the maximum possible value of 
(sensitivity+ specificity− 1) over all possible decision thresholds, and provides a sum-
mary measure combining sensitivity and specificity [36]. Note that before obtaining the 
combination scores, all the solution combination vectors obtained in the step-down and 
min-max techniques are divided by their corresponding norms so that each solution 
vector has norm 1.

Figure 1 shows the optimal combination vector scores for each class. SCOR results in 
improved separation of these scores across the classes, which is reflected in the higher 
values of EHUM and Youden’s index achieved for both versions of the objective func-
tion (ULBA and EHUM). In addition, the cut-points (marked by horizontal dotted lines) 
obtained by SCOR distinguish the three outcome categories more clearly than those of 
step-down or min-max.

In Table 2 we provide the values of the optimal combination coefficients using SCOR, 
Nelder-Mead, and step-down. In the familiar setting of AUC estimation, where there are 
two outcome categories, a value of 0.5 corresponds to the expected value for random 
guessing, with higher values demonstrating improved classification accuracy. Here, since 
we have three ordered categories, the expected value of the HUM under random guess-
ing is 13 ! ≈ 0.167 . Hence, estimated values of EHUM or ULBA above 0.167 can be con-
sidered as an improvement over a random guess. Since we obtain the highest value of 
DE(β̂) using the estimates obtained by maximizing ULBA with the SCOR algorithm, the 
coefficients obtained using this approach (i.e., those given in the first column) represent 

Table 2  Optimal coefficients obtained by maximizing the ULBA and EHUM objective functions 
using the SCOR, NM and step-down algorithms

The EHUM objective function values at all the obtained solutions and the estimated Youden’s Index are reported in the last 
two rows. The result for the method with the best performance is marked in bold

Markers ULBA (SCOR) ULBA (NM) ULBA (ST) EHUM (SCOR) EHUM (NM) EHUM (ST)

Cricopharyngeal muscle 0.243 0.703 0.137 0.293 0.697 0.137

Esophagus 0.518 0.293 0.302 0.600 0.299 0.302

Glottic area – 0.080 0.534 0.061 – 0.100 0.539 0.061

Inferior PC 0.345 0.000 0.211 0.220 0.000 0.211

Ipsilateral ADM 0.311 0.216 0.092 – 0.009 0.215 0.092

Middle PC 0.509 0.102 0.698 0.570 0.097 0.698

Mylohyoid muscle 0.229 0.066 0.503 0.210 0.065 0.503

Superior PC 0.079 0.132 0.306 0.226 0.128 0.306

Intrinsic tongue muscles 0.365 0.237 0.000 0.274 0.239 0.000

DE ( ˆβ) 0.419 0.341 0.399 0.413 0.341 0.399

Youden Index 0.471 0.334 0.408 0.428 0.334 0.408
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(a) ULBA (SCOR)
DE = 0.419, Y I =
0.471

(b) ULBA (NM)
DE = 0.341, Y I =
0.334

(c) ULBA (Step-down)
DE = 0.399, Y I =
0.408

(d) ULBA (Min-max)
DE = 0.363, Y I =
0.361

(e) EHUM (SCOR)
DE = 0.413, Y I =
0.428

(f) EHUM (NM)
DE = 0.341, Y I =
0.334

(g) EHUM (Step-
down)
DE = 0.341, Y I =
0.408

(h) EHUM (Min-max)
DE = 0.363, Y I =
0.361

Fig. 1  Boxplots of the optimal combination vector scores are shown across the outcome categories 0, 1, 
and 2-4. The methods compared are SCOR a ULBA, e EHUM), NM b ULBA, f EHUM), Step-down c ULBA, g 
EHUM) and Min-max d ULBA, h EHUM). The horizontal dotted lines denote the corresponding cut-points for 
classification obtained by maximizing Youden’s Index. Since this example includes 3 outcome categories, 
values of EHUM or ULBA greater than 1

3 ! ≈ 0.167 reflect improved accuracy over random guessing
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the preferred solution. The esophagus and middle pharyngeal constrictor, which are 
known to be essential to swallowing function [37], have the largest estimated coeffi-
cients, representing a relatively large contribution to the predicted combination scores. 
Since increasing radiation dose to structures in the head and neck is generally expected 
to worsen function, the slight negative coefficient for glottic area likely reflects corre-
lation with other predictors, rather than a protective effect. The results from this case 
study could be used to inform radiation treatment planning, since intensity-modulated 
radiation therapy plans could be adjusted to minimize predicted dysphagia risk by spar-
ing radiation to key muscles and organs in the head-and-neck region.

Discussion
Here the proposed SCOR algorithm is used mainly in the context of a classification 
problem with a hypervolume under manifolds criteria. However, this algorithm can be 
used in various other statistical problems such as directional statistics or single-index 
models where fixing the norm of the coefficient vector is needed to avoid the issue of 
non-identifiability. In the future, the SCOR algorithms can be extended to the variable 
selection problem over the coefficients belonging to the surface of a unit sphere.

Conclusions
In this paper, we propose a novel derivative-free black-box optimization technique to 
minimize any non-convex function where the parameters are constrained to the surface 
of a unit sphere. The proposed algorithm is highly efficient, as it allows parallelization 
using up to 2n parallel threads when maximizing a function whose parameters belong 
to the surface of an n-dimensional unit sphere. Our simulations demonstrate that SCOR 
outperforms existing methods for biomarker combination, as well as other black-box 
optimization techniques, in terms of both performance and computation time. The R 
package SCOR, which implements the method described here, is available at https://
CRAN.R-project.org/package=SCOR.

We show that using SCOR, we obtain better estimates of the empirical hypervolume 
under the manifold (EHUM) compared to the estimates obtained using the Nelder-
Mead, step-down and min-max algorithms. Irrespective of the objective function con-
sidered, the EHUM value at the solution obtained by SCOR is always better than that 
obtained using the alternative algorithms. In our case study, we applied SCOR to find 
the optimal combination coefficients of radiation dose to various structures in the head-
and-neck to distinguish subjects with increasing severity of swallowing difficulty experi-
enced as a result of radiation treatment for cancer. We found that the values of EHUM 
and Youden’s index obtained were higher for SCOR than for existing alternatives, sug-
gesting that this approach can be applied to more accurately stratify patients based on 
their risk of developing dysphagia.

Methods
In this section, we provide a detailed description of the algorithm for our proposed 
SCOR method.
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Basic Principle

The basic principle of the search for the optimal value is as follows. Within an iteration, at 
first a step size s > 0 is fixed. Then, two new points in the neighborhood are obtained by 
adding and subtracting s from each coordinate keeping all other coordinates fixed. Thus, 
at any given iteration, 2d possible new solution points are generated. For example, if 
(β1,β2,β3) denotes the current solution (taking d = 3 ), then the new set of possible solu-
tions are (β1 + s,β2,β3), (β1 − s,β2,β3), (β1,β2 + s,β3), (β1,β2 − s,β3), (β1,β2,β3 + s) 
and (β1,β2,β3 − s) . This strategy is related to the approach used in [38] to solve an 
unconstrained optimization problem. This specific principle has two desirable proper-
ties: firstly, at each iteration the size of the search space (i.e., the set of newly generated 
points) is of O(d) (i.e., 2d), unlike GA, where the search space increases exponentially 
with the dimension [39]. Secondly, after the step-size s is fixed, the operations for finding 
the 2d new points and evaluating the objective function at those points are independent, 
so they can be performed in parallel. However, due to the spherical constraint on β , this 
simple search strategy cannot be directly applied here.

We now summarize the proposed optimization scheme designed to address this issue. 
The algorithm can be broken into a sequence of runs where within each run, a number of 
iterations are performed. At the beginning of each iteration, the step-size s > 0 is fixed. 
The location of the new set of points to be evaluated in the iteration depends on this step 
size s. The exact relationship between the step size and the new set of possible solutions 
is described in the following subsections. The first iteration in the first run starts from 
a starting point provided by the user. At each iteration, a new set of 2d points around 
the current solution is generated. As mentioned above, the location of these new points 
is directly related to the value of step-size s. In general, larger values of s result in more 
distant points from the current solution. Then, the objective function is evaluated at all 
2d + 1 points. At the end of an iteration, the point with the maximum objective func-
tion value is taken as the updated solution. Thus, at each iteration the objective function 
value either increases or stays the same. At the beginning of a run, the step size is taken 
to be large. Depending on the improvement of the objective function across iterations, 
the step size is either reduced or kept same after each iteration. Once the step size within 
a run becomes sufficiently small (determined by a threshold φ which is a tuning param-
eter of the algorithm), the run ends, and the current solution is passed to the next run, 
which uses this solution as its starting point. Once two consecutive runs yield the same 
solution, the algorithm stops execution and returns the final solution. A brief overview 
of the SCOR algorithm is given in Fig. 2.

Derivation of adjustment step‑size

The RMPS method [22] incorporates adjustments to the step size to ensure that the pro-
posed points remain within a restricting hyper-rectangle. In that approach, once the step 
size s is added to (or subtracted from) any of the coordinates, the other coordinates are 
kept unchanged. However, over a spherically constrained parameter space, adding the 
step size s to a coordinate of the current solution while keeping the other coordinates 
fixed would yield a point outside the unit sphere surface, assuming the current solution 
is on the unit sphere. To handle a spherically constrained parameter space, a critical 
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challenge is devising an adjustment strategy such that when s is added to (or subtracted 
from) the i-th coordinate, the adjustment of other coordinates ensures that the proposed 
solution point is still on the unit sphere. We derive an appropriate adjustment step size ti 
which depends on s and is chosen so that when ti is added to the remaining coordinates, 
the point obtained is still on the unit-sphere. In Figure 3(a) an exemplary plot is pro-
vided giving an idea why adjustment step-size should be a function of s.

For example, suppose within any given run, at the j-th iteration, the current solution 

is given by β(j) = (β
(j)
1 , . . . ,β

(j)
d ) . Note that 

∑d
k=1(β

(j)
k )2 = 1 . Suppose we update the i-th 

coordinate as β(j+1)
i = β

(j)
i + s. Then the corresponding adjustment step size ti is added 

to the rest of the coordinates, β(j+1)
k = β

(j)
k + ti, k ∈ {1, . . . , d} \ {i}. By the definition of 

the adjustment step size, β(j+1) is on the unit sphere as long as such a ti exists. Since β(j) 
is also on the unit-sphere, we have,

Fig. 2  Flowchart of the SCOR algorithm where s denotes the step size, φ denotes the step size threshold, and 
SOL(k) denotes the solution returned by the k-th run 

Fig. 3  Exploratory moves on the surface of unit sphere by SCOR. a shows an initial point (β1,β2,β3) (green) 
on the surface of the unit sphere and a point explored (β1 + t2,β2 + s,β3 + t2) (red) after making exploratory 
move with step-size s for the 2nd coordinate, where t2 denotes the adjustment step-size. b shows exploratory 
moves in a typical iteration of SCOR: starting from the current solution point (0.289,−0.816, 0.5) (green), the 
points explored after making exploratory moves with step-size s = 0.03 (blue) and s = 0.06 (red)
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which implies,

The value of ti can be obtained by solving (3) to obtain ti = T1(s) or T2(s) where

In order for the proposed algorithm to converge to the true solution, the value of ti needs 
to be chosen such that the distance of the new possible solution β(j+1) from the current 
solution β(j) should go to 0 as s goes to 0, which only holds true for ti = T1(s) . So for a 
given step size s, the adjustment step size is taken to be T1(s) . It should be noted that 
T1(s) may come out to be complex implying that for the given step size s and coordinates 
of the current solution, no appropriate adjustment step size ti exists. In those cases, we 
adopt alternative strategies, as discussed in the section on local step sizes. In Fig.  3b, 
starting with a current solution on the surface of unit sphere, the new set of explored 
points are plotted on the unit-sphere corresponding to two different exemplary step 
sizes. In order to make the algorithm more efficient, a minor modification is incorpo-
rated which is described in Section C of the Additional file 1

Tuning parameters

In SCOR, the tuning parameters and their roles are similar to those considered in 
RMPS and RMPSS [22, 24]. Since the solution update strategy is consistent across runs, 
explaining the roles of the tuning parameters within a single run is sufficient to illus-
trate their effect. Within each run, iterations are initialized with a starting point which is 
either the initial guess provided by the user (for the first run) or the solution returned by 
the previous run (for all runs after the first run). At the beginning, the step size is set to 
sinitial , which is preferably taken to be large in order to promote selection of distant can-

didate solutions w.r.t. the current solution. Suppose β(j) = (β
(j)
1 , . . . ,β

(j)
d ) denotes the 

solution at the end of j-th iteration. At the beginning of (j + 1)-th iteration, suppose the 
current step-size is s = s(j+1)(> 0) . Then the set of d new candidate solutions is given by 
{β(j+1)

(i,+) }di=1 where

for s > 0, i = 1, . . . , d . Similarly, taking s = −s(j+1) , another d candidate solutions are 
generated given by {β(j+1)

(i,−) }di=1 where

(2)
d∑

k=1

(β
(j)
k )2 =

d∑

k=1

(β
(j+1)
k )2 =

d∑

k=1,k �=i

(β
(j)
k + ti)

2 + (β
(j)
i + s)2 = 1,

(3)(d − 1)t2i + 2ti

d∑

k=1,k �=i

β
(j)
k + (2sβ

(j)
i + s2) = 0.

(4)

T1(s) =
−2

�d
k=1,k �=i β

(j)
k +

√
Di(s)

2(d − 1)
, T2(s) =

−2
�d

k=1,k �=i β
(j)
k −

√
Di(s)

2(d − 1)
,

Di(s) =



2

d�

k=1,k �=i

β
(j)
k




2

− 4(d − 1)(2sβ
(j)
i + s2).

β
(j+1)
(i,+) = (β

(j)
1 + ti,β

(j)
2 + ti, . . . ,β

(j)
i−1 + ti,β

(j)
i + s,β

(j)
i+1 + ti, . . . ,β

(j)
d + ti).
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Thus, within any given iteration, based on the step size s, 2d new candidate solutions 
are generated. The objective function is evaluated at these 2d + 1 points (2d candidate 
solutions and the current solution β(j) ), and the point with the lowest value of the objec-
tive function value is taken as the updated solution β(j+1) . As discussed in the previous 
section on the derivation of the adjustment step-size, in some scenarios, the adjustment 
step sizes ti or t ′i might be complex. In those settings, we propose alternative update 
strategies which are discussed in the following section on local step sizes.

Within a run, at the end of any given iteration, if the improvement of the objective 
function value is less than a user-specified tolerance tol_fun, the step size is divided 
by a factor ρ > 1 denoted as the step decay rate. So, at each iteration, the step size 
is either kept the same or reduced by dividing it by the step decay rate. For example, 
s(j+1) will be either s(j) or s

(j)

ρ
 depending on the improvement to the solution obtained 

in the (j + 1)-th iteration. The step size is reduced to enable finer search close to the 
current solution if no better solution is found in the set of candidate solutions using 
a larger value of s. The idea of reducing the step size is a well-known strategy used in 
existing derivative-free optimization algorithms on unconstrained parameter spaces 
[38, 40].

We consider the step size as sufficiently close to 0 once its value gets smaller than the 
step size threshold φ . Once the step size becomes less than φ , no further iterations are 
performed within that particular run. If two consecutive runs yield the same solution, 
the algorithm terminates after returning the solution obtained in the last run.

To handle cases where the solution is known to be sparse a priori, we consider 
the sparsity threshold � as another tuning parameter. Once the step size for the j-th 
iteration s(j) is determined, before calculating the adjustment step size ti , all the coef-
ficients (except the i-th coordinate) with absolute values less than � are set equal to 
zero. Suppose at the j-th iteration, while updating i-th coordinate, out of the remain-
ing d − 1 coordinates, h of them have absolute values less than � . Then those h coor-
dinates are set equal to 0. The adjusted step size ti is calculated based on rest of the 
remaining d − h coordinates. In case a sparse solution is not expected, the user can 
set the value of � to 0.

Local step sizes

At the beginning of the j-th iteration, we initialize 2d local step sizes such that s+i = s(j) 
and s−i = −s(j) for i = 1, . . . , d . When adding s+i  (or s−i  ) to the i-th coordinate, if the cor-
responding adjustment step size ti (or t ′i ) exists, update movements are performed with-
out modifying s+i  (or s−i  ). However, in case no such real ti (or t ′i ) exists for the given local 
step size s+i  (or s−i  ), it is subsequently divided by the step decay rate ρ until the solution ti 
(or t ′i ) becomes real. Note that in equation (4), Di(s) −→

(
2
∑d

k=1,k �=i β
(j)
k

)2
> 0 as s −→ 0 . 

Therefore, a real ti (or t ′i ) will exist given a local step size s+i  (or s−i  ) sufficiently close to 0 
(see Theorem 1). Since at the beginning of the iteration, the values of these local step-
sizes are set equal to the step size for that iteration, the values of the local step sizes in the 
current iteration do not depend on the values from the previous iteration.

β
(j+1)
(i,−) = (β

(j)
1 + t ′i ,β

(j)
2 + t ′i , . . . ,β

(j)
i−1 + t ′i ,β

(j)
i + s,β

(j)
i+1 + t ′i , . . . ,β

(j)
d + t ′i), s < 0.
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Overview of algorithm

Pseudocode for the proposed procedure is given in Algorithm  1. There we let β̂(R) 
denote the solution obtained at the end of R-th run, and β(j) denotes the solu-
tion obtained after the j-th iteration within a particular run. We set an upper limit 
max_runs on the maximum number of runs to be executed. Within each run, there is 
an upper limit max_iter on the number of iterations. The roles of the tuning param-
eters along with their default values are provided in Additional file 1 Table S1.
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Theorem  1  Suppose S = {(x1, . . . , xn) ∈ Rn :
∑n

i=1 x
2
i = 1, i = 1, · · · , n} . Consider a 

sequence of step-sizes δk = s
ρk

 for k ∈ N and s  = 0, ρ > 1 . Then there exists a K such that 

for k ≥ K  , all adjustment step sizes {ti}di=1 are real.

Theorem 2  Suppose f is convex, continuous and differentiable on S . Consider a sequence 
δk = s

ρk
 for k ∈ N and s > 0, ρ > 1 . Suppose u is a point in S . Define 

u
(i+)

k = (u1 + ti(δk), . . . ,ui−1 + ti(δk),ui + δk ,ui+1 + ti(δk), . . . ,un + ti(δk)) and 
u
(i−)

k = (u1+ ti(−δk), . . . ,ui−1+ ti(−δk),ui−δk ,ui+1+ ti(−δk), . . . ,un+ ti(−δk)) for 
i = 1, · · · , n , where ti(s) denotes the adjustment step size corresponding to step size s.

Given conditions detailed in Additional file 1 Section D, the global minimum of f over S 
occurs at u.

The proofs of Theorems 1 and 2 are provided in Additional file 1 Section D. As is the 
case for any existing black-box optimization method, SCOR is not theoretically guar-
anteed to find the global minimum of any arbitrary black-box function. However, it 
incorporates strategies to avoid getting stuck at local minima. As shown in Section E 
of the Additional file 1, SCOR outperform competing black-box optimization methods 
including GA, SA, and PS in terms of identifying better solutions for benchmark func-
tions. Moreover, as discussed in the next section, in the context of maximizing HUM 
estimates, SCOR outperforms existing methods proposed for biomarker combination as 
well.
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are reported, with the standard error in the parentheses. The result for the method with the best performance is 
marked in bold.
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