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Background
Circular RNA is a special class of single-stranded, non-coding RNA, which forms a 
closed covalent ring structure by connecting the 3′ and 5′ ends through exon or intron 
circularization. In the 1970s, circRNA was discovered for the first time in Viroids and 
Sendai virus particles of infected plants by electron microscopy and other technologies 
[1]. Later, circRNA was also found in both Animal cells [2] and fungal cells [3]. Due to the 
limitations of biotechnology and the particularity of structure, circRNA was considered 
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an artifact or miss-splicing product. Therefore, in the following decades, it was not 
taken seriously by scientists. The past decades have seen a growth in high-throughput 
sequencing and other related technologies. Biologists discovered that circRNA is widely 
present in archaea and may have biological functions [4]. Simultaneously, Salzman et al. 
[5] also proved that circRNA is a general feature in the gene expression program of 
human cells and may play an essential role in various biological functions. Then Nature 
published two articles [6, 7] about the biological function of circRNA, which unveiled 
the mystery of circRNA for the first time. Since then, circRNA has raised the interest 
of many biologists. PubMed, a well-known biomedical database, has collected more 
than 7000 articles about circRNA from 2012 to December 2020, and it is still on the rise. 
Many of the articles are focused on the research of associations between circRNA and 
diseases due to its resistance to exonuclease-mediated degradation and higher stability 
than most linear RNA in cells.

Existing experimental results reveal that circRNA plays a crucial role in diseases by 
interacting with disease-related miRNAs and has excellent potential to become a new 
clinical diagnostic marker. Hense et al. [8] have confirmed that CDR1as and miR-7 are 
co-expressed in the mouse brain and affect midbrain development. The expression level 
of hsa_circRNA_100855 is higher in patients with cervical lymph node metastasis or late 
clinical treatment at stage T3 [9]. For the treatment of depression, hsa_circRNA_103636 
is a potential new biomarker [10]. Liu et al. [11] used circRNA chips to screen the dif-
ferential expression of circRNA and co-expression analysis of ceRNA between arthritis 
patients and normal people, concluding that circRNA-CER may be a potential target for 
arthritis treatment. In addition, circRNA is also closely related to atherosclerosis [12], 
diabetes [13], Ruan virus disease [14], viral hepatitis [15], and neurological diseases 
[16]. There is a strong correlation between circRNA and diseases, so recognizing their 
associations is essential to disease treatment and diagnosis. However, these experimen-
tal methods are expensive, difficult, and slow-progressing. An effective computational 
method is necessary for identifying circRNA-disease associations.

In recent years, many computational methods were proposed and mostly divided into 
two types: methods based on network and methods based on machine learning. As for 
network-based methods, Lei et  al. [17] proposed a new computational path weighted 
method for predicting circRNA-disease associations on the circR2Disease dataset. 
Fan et al. [18] presented a heterogeneous network-based model, named KATZHCDA, 
by integrating disease similarity matrix, circRNA expression profiles, and known cir-
cRNA-disease associations and using the KATZ model to measure circRNA-disease 
associations. Deng et  al. [19] introduced the KATZCPDA for identifying circRNA-
disease associations with multiple heterogeneous networks constructed by the inte-
grations among circRNAs, proteins, and diseases. Zou et al. [20] constructed multiple 
similarity networks and association networks and used the double matrix factorization 
method to infer circRNA-disease associations. Lei et al. [21] used the random walk with 
restart algorithm to weight the features and then used the k-nearest neighbor to predict 
unknown circRNAs and disease associations.

As for methods based on machine learning, Zheng et  al. [22] provided iCDA-CGR 
based on non-linear information and quantify location to predict the circRNA-dis-
ease associations. The method first uses Chaos Game Representation to quantify the 
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non-linear sequence relationship of circRNA with biological sequence position informa-
tion. Fan et  al. [23] presented a novel approach MSFCNN using CNN. The similarity 
kernels of circRNA or disease are integrated with the similarity kernel fusion method. 
Then, they constructed the feature matrix using interaction features and multiple simi-
larity kernels among diseases, miRNAs and circRNAs. Finally, the model predicts poten-
tial circRNA-disease association by trained CNN with the features matrix input. Wang 
et al. [24] proposed a new model implemented by extreme learning machine and CNN. 
The CNN model is constructed for effective hidden-feature extraction, and the ELM 
classifier is designed to identify potential circRNA-disease association on the circR2Dis-
ease dataset. Xiao et al. [25] presented a method by graph-based multi-label learning to 
predict potential associations. The model contains the graph regularization and mixed-
norm constraint terms to make a better prediction. Wei et  al. [26] provided iCircDA-
MF using matrix factorization to predict the circRNA-disease associations. Zhao 
et  al. [27] developed a novel method IBNPKATZ with KATZ measure and the bipar-
tite network projection. Lei et al. [28] designed a model using gradient boosting deci-
sion tree to predict circRNA-disease associations on the circR2Disease dataset. Wang 
et al. [29] developed a new model based on Fast learning with graph convolutional net-
works (FastGCN). Ding et al. [30] presented an approach by logistic regression model 
and the random walk. Chen et  al. [?] first constructed multiple association networks, 
then integrated multiple similarities to generate circRNA and disease features, and then 
used graph attention network to predict circRNA-disease associations. The association 
between disease and circRNA is a complex process involving plentiful biological infor-
mation. Due to the lack of full use of relevant biological information, the performance of 
the above models has much room to improve.

In this work, we develop a method called MSPCD, which calculates circRNA similarity 
and disease similarity more accurately by integrating more biological information such 
as circRNA-disease associations, circRNA-gene ontology (GO) associations. MSPCD 
also utilizes the neural network to extract circRNA and disease high-order features and 
adopts the DNN to infer unknown circRNA-disease associations. To verify the perfor-
mance of MSPCD, five-fold cross-validation is performed on the circFunBase dataset. 
The AUC value of MSPCD is 0.9904 on the circFunBase dataset. Moreover, we compare 
MSPCD with several state-of-the-art computational frameworks on the circFunBase 
dataset and perform a case study. The experimental results demonstrate that MSPCD is 
efficient in inferring unknown circRNA-disease associations.

Results and discussion
The performance of MSPCD based on five‑fold cross‑validation

To evaluate MSPCD’s predictive ability in circRNA-disease associations, we imple-
ment five-fold cross-validation experiments on the circFunBase dataset. The experi-
mental results are summarized in Table 1. In addition, we also plot the ROC curve, as 
shown in Fig. 1. From the table, we can see that the five experiments’ AUC​ values of the 
MSPCD model reach 0.9903, 0.9924, 0.9908, 0.9879, 0.9907, respectively, and the aver-
age value is 0.9904. In terms of accuracy index, the five experiments’ accuracy values are 
0.9505, 0.9631, 0.9296, 0.9371, and 0.9463, respectively, with an average value of 0.9453. 
The F1_score reflects a harmonic average of the accuracy and recall rate of the model. 
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The F1_score values of the five experiments are 0.9501, 0.9652, 0.9314, 0.9387, 0.9473, 
respectively, and the average value is 0.9463. Besides, the average precision and recall 
are 0.9246 and 0.9702, respectively. The above experimental results demonstrate that 
MSPCD has good performance in inferring unknown circRNA-disease associations.

Comparison with existing state‑of‑the‑art methods

In this section, we compare the model with several state-of-the-art methods (DMFCDA 
[31], KATZCPDA [19], AE_RF [32], GBDTCDA [28], IMS-CDA [33], AE_DNN [34]). 
DMFCDA regards circRNA-disease associations prediction as a kind of recommenda-
tion problem. Firstly, DMFCDA extracts circRNA and disease latent features from the 
original circRNA-disease association matrix, respectively, then cascades circRNA and 
disease latent features to represent circRNA and disease pair. Finally, DMFCDA uti-
lizes a DNN to realize the prediction of circRNA and disease associations. KATZCPDA 
first integrates multiple heterogeneous networks including circRNA, protein, and dis-
ease, and then uses the KATZ method to predict the relationship between circRNA and 
disease. AE_RF firstly obtains circRNA similarity and disease similarity by integrating 
circRNA functional similarity, circRNA Gaussian interaction profile kernel similar-
ity, disease semantic similarity and disease Gaussian interaction profile kernel similar-
ity. Then, AE_RF uses autoencoder for feature selection, and employs Random Forest 

Table 1  Five-fold cross-validation results on circFunBase dataset

Validation set AUC​ Accuracy Precision Recall F1_score

1 0.9903 0.9505 0.9461 0.9541 0.9501

2 0.9924 0.9631 0.9546 0.9760 0.9652

3 0.9908 0.9296 0.8811 0.9878 0.9314

4 0.9879 0.9371 0.9259 0.9519 0.9387

5 0.9907 0.9463 0.9157 0.9812 0.9473

Average 0.9904 0.9453 0.9246 0.9702 0.9463

Fig. 1  ROC curves performed by MSPCD on circFunBase dataset
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to give the final circRNA-diseases association predictions. GBDTCDA uses circRNA-
related expression profiles, circRNA sequences, and gene ontology (GO) terms data to 
construct a circRNA similarity network, and then uses the GBDT algorithm to identify 
circRNA-disease associations. IMS-CDA first combines the semantic similarity of dis-
eases, Jaccard similarity and Gaussian interaction profile kernel similarity of disease and 
circRNA. Then IMS-CDA uses stacked autoencoder to extract latent features. Finally, 
the random forest classifier is used to predict the association between circRNA and dis-
ease. AE_DNN resembles the AE_RF and have several vital improvements. AE_DNN 
replaces circRNA functional similarity with circRNA sequence similarity when integrat-
ing circRNA similarity, and replaces the RF classifier with the DNN classifier.

We perform five-fold cross-validation experiments. Table 2 shows experimental results 
for the seven methods. Furthermore, we also plot ROC curves, as shown in Fig. 2. From 
the table, we can see that MSPCD AUC​ value achieves the best result, which is much 
higher than that of the second-best method by 4.12%. And compared with other evalu-
ation indicators, it has also achieved the best results on accuracy, recall and F1_score . 
Our model can achieve such good results because it not only integrates additional bio-
logical information to obtain circRNA similarity and disease similarity, but also utilizes 
hierarchical neural networks to predict circRNA-disease associations.

Table 2  The comparison of different methods based on five-fold cross-validation

Model AUC​ Accuracy Precision Recall F1_score

MSPCD 0.9904 0.9453 0.9246 0.9702 0.9463

DMFCDA 0.9492 0.8954 0.8816 0.9149 0.8978

KATZCPDA 0.9208 0.9103 0.9204 0.8837 0.9016

AE_RF 0.9079 0.9079 0.9689 0.8426 0.9006

GBDTCDA 0.9064 0.8899 0.9004 0.8603 0.8798

IMS-CDA 0.8773 0.8403 0.8771 0.8156 0.8452

AE_DNN 0.7816 0.7055 0.7707 0.6024 0.6649

Fig. 2  ROC curves performed by different methods on circFunBase
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In order to further evaluate the performance of MPSCD, we conduct experimental 
comparisons on an independent testing dataset. We randomly select 20% of the samples 
from the circFunBase dataset as the independent testing dataset, which is, 2984*20% ≈ 
596 samples. The remaining 2984 − 596 = 2388 samples are divided into five parts of 
roughly the same size, which are used in the training dataset and the validation dataset 
to cross-validate the model. After this division, we ensure that the independent testing 
dataset does not overlap with other datasets. We draw the ROC curve of these meth-
ods on the independent testing dataset. From Fig. 3, we can see that the AUC value of 
MSPCD is 0.9853 on independent testing dataset.

Comparison of different datasets

To further verify the performance of MSPCD, we perform a five-fold cross-validation 
experiment on the circR2Disease dataset. The experimental results are illustrated in 
Table 3, and the ROC curve is shown in Fig. 4. From the table, we can see that the aver-
age AUC​ value, accuracy, precision, recall, F1_score of MSPCD on circR2Disease are 
0.9526, 0.9157, 0.9119, 0.9219, and 0.9163, respectively.

In addition, in order to further verify the application capabilities of MSPCD in dif-
ferent datasets, we also compared MSPCD with the above state-of-the-art methods in 

Fig. 3  ROC curves performed by different methods on independent testing dataset

Table 3  Five-fold cross-validation results on circR2Disease dataset

Validation set AUC​ Accuracy Precision Recall F1_score

1 0.9325 0.8907 0.9090 0.8800 0.8943

2 0.9643 0.9285 0.9115 0.9363 0.9237

3 0.9551 0.9201 0.9370 0.9153 0.9260

4 0.9517 0.9240 0.9292 0.9130 0.9210

5 0.9595 0.9156 0.8730 0.9649 0.9166

Average 0.9526 0.9157 0.9119 0.9219 0.9163
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the circR2Disease database.The ROC curves of these methods are shown in Fig. 5. From 
the figure, we can see that MSPCD has achieved the best AUC value.The experimental 
results confirm that MSPCD can be applied to different datasets.

Analysis effects of the length of high‑order feature

In the model, we use neural networks to extract circRNA and disease high-order fea-
tures, respectively. If the high-order feature’s length is too short, the model will be una-
ble to thoroughly learn the complicated relationship between circRNA and disease. If 
the high-order feature’s length is too long, the risk of overfitting will be increased. In this 
section, to study the effect of the length of high-order feature on circRNA and disease 
associations prediction, we set the length of high-order feature to 8, 16, 32, 64, 128 for 
experimental comparison.

Fig. 4  ROC curves performed by MSPCD on circR2Disease dataset

Fig. 5  ROC curves performed by seven methods on circR2Disease dataset
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The experimental results are shown in Fig. 6. From the figure, we can see that the 
AUC​ value does not change much when the high-order feature’s length is in the range 
of 16 to 128. This is because we use regularization to alleviate overfitting.

Comparison with different classifiers

In predicting circRNA-disease associations, after obtaining circRNA similarity and 
disease similarity, many previous models directly cascade them to represent each 
circRNA-disease pair. However, MSPCD firstly uses neural networks to extract high-
order features from circRNA similarity and disease similarity. Then, MSPCD employs 
neural networks to predict circRNA-disease associations. In this section, to verify 
the effectiveness of hierarchical neural network of our model, we cascade circRNA 
similarity and disease similarity to represent each circRNA and disease pair, and then 
directly use several classical classifiers (DNN, RF, SVM) to infer unknown circRNA-
disease associations.

We have carried out five-fold cross-valid experiments for these classifiers. The 
experiments are shown in Table 4 and Fig. 7. The AUC​ values of MSPCD, DNN, SVM 
and RF are 0.9904, 0.9763, 0.9679 and 0.8983 respectively. The experimental results 
illustrate that hierarchical neural networks used in MSPCD can improve the model’s 
ability in predicting circRNA-disease association. At the same time, it is worth noting 

Fig. 6  Effects of lengths of high-order feature

Table 4  The comparison of different classifiers based on five-fold cross-validation

Classifiers AUC​ Accuracy Precision Recall F1_score

RF 0.8983 0.7828 0.7903 0.7690 0.7794

SVM 0.9697 0.9433 0.9277 0.9617 0.9443

DNN 0.9763 0.9279 0.9326 0.9240 0.9274

MSPCD 0.9904 0.9453 0.9246 0.9702 0.9463
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that the AUC​ value of directly using DNN and SVM are also higher than other previ-
ous computational methods, which reverifies that it is useful to obtain circRNA simi-
larity and disease similarity by fusing various biological information.

Case study

To verify the practical capacity of MSPCD in predicting circRNA-disease associations, 
we perform a case study on the circFunbase dataset. CircFunBase contains 2597 circR-
NAs ,67 types of diseases and 2984 comfirmed circRNA-disease associations. We used 
the known circRNA-disease associations in circFunBase to train the MSPCD model, and 
then predict the remaining 196,944 unknown circRNAs and disease associations. Next, 
we ranked the unknown circRNAs and disease associations according to the predicted 
scores. We took out the top 15 circRNAs and disease associations and performed lit-
erature validation in the PubMed database. As shown in Table 5, the results show that 
five of the top 15 circRNA-disease candidate associations are confirmed in PubMed. It’s 
worth noting that the remaining ones, which have not been confirmed, they are poten-
tial circRNA-disease associations to be confirmed.

Conclusion
Understanding the relationship between circRNA and disease will help us recognize 
the disease mechanism, which is significant for accurate staging and remedy of dis-
ease. Additionally, with the formation of many databases about circRNA, it is possible 
to explore the associations between circRNA and disease by computational methods, 
which complements for the high cost of biological methods. The previous computational 
methods have limits because they do not fully consider relevant biological informa-
tion, resulting in low accuracy of prediction. We developed a method called MSPCD 
to infer unknown circRNA-disease associations. To obtain similarity of circRNA and 

Fig. 7  Histograms of the results of different classifiers based on five-fold cross-validation
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disease more accurately MSPCD firstly integrates various biological information. Then, 
MSPCD extracts high-order features of circRNA and disease by the neural network. 
Finally, MSPCD utilized DNN to obtain the prediction result. We implemented five-fold 
cross-validation experiments. the AUC value of MSPCD reached 0.9904 on circFunBase 
dataset, which outperformed other previous models. The comprehensive experimental 
results illustrate that MSPCD has a good performance in inferring unknown circRNA-
disease associations. In MSPCD, circRNA-disease association prediction is modeled as 
supervised learning. The sparse supervisory signal leads to limited performance. Self-
supervised learning mitigates the effects of sparse supervision signals by pretraining on 
large-scale dataset without manual annotations. In the future, we will consider applying 
self-supervised learning to circRNA-disease association prediction.

Materials and methods
Problem description

Limited by time and cost, exploring the correlations between circRNAs and human 
diseases based on biological experiments has encountered many difficulties and bottle-
necks. Instead of traditional experiments, computational methods are proved to be an 
efficient and accurate way to discover the potential connections between circRNAs and 
diseases.

Data set

We obtained the circRNA-disease association data from CircFunBase [35]. As a biologi-
cal information database for circRNAs, CircFunBase provides high-quality functional 
circRNA resources. We finally extracted 2984 verified circRNA-disease associations, 
including 2597 circRNAs and 67 diseases, the same as Zheng et al. [36]. Based on this 
data set, we established the circRNA-disease association matrix Sd . If circRNA cm is 
related to disease dn , the value of Sd(m, n) is 1; otherwise, it is 0.

Table 5  Top 15 circRNA-associations predicted by MSPCD on circFunBase dataset

CircRNA Disease Evidence (PMID)

hsa_circ_0067997 Gastric cancer PMID: 30688097

hsa_circ_0082081 Basal cell cancer Unconfirmed

hsa_circ_0054537 Coronary artery disease Unconfirmed

hsa_circ_0007534 Cervical cancer PMID: 31445025

hsa_circ_0004872 Gastric cancer PMID: 33172486

hsa_circ_0053764 Acute myocardial infarction Unconfirmed

hsa_circ_0084192 Cervical cancer Unconfirmed

hsa_circ_0044556 Colorectal cancer PMID: 32884449

hsa_circ_0028319 Cutaneous squamous cell cancer Unconfirmed

hsa_circ_0078616 Ovarian aging Unconfirmed

hsa_circRNA_401801 Colorectal cancer Unconfirmed

hsa_circ_0007536 Tuberculosis Unconfirmed

hsa_circ_0030428 Hypertension Unconfirmed

hsa_circ_0001361 Bladder cancer PMID: 31705065

hsa_circ_0023546 Cholangiocarcinoma Unconfirmed
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We also built another circRNA-disease association dataset from circR2Disease [28]. The 
circR2Disease dataset includes 612 circRNA-disease associations involving 533 circRNAs 
and 89 diseases. The details of the database are shown in Table 6.

CircRNA sequence similarity

We acquire the circRNA sequence information from CircFunBase and CircBase (http://​
www.​circb​ase.​org/) and establish the circRNA sequence similarity model based on the Lev-
enshtein distance [37]. Levenshtein distance is a kind of edit distance widely used to meas-
ure the similarity between two strings. It is defined as the minimum number of edits to 
convert a source string into a target string. It only allows three single-character operations: 
insertion, deletion, and replacement. According to previous relevant researches, the cost of 
insertion and deletion are set to 1, and the cost of replacement is set to 2. Thus, we can cal-
culate the sequence similarity of circRNA cm and circRNA cn using the following formula:

where costmin indicates the Levenshtein distance between the sequence of cm and the 
sequence of cn , and l(cm) indicates the sequence length of circRNA cm.

CircRNA functional similarity

Based on the assumption that circRNAs with similar functions are associated with simi-
lar diseases, gene ontology (GO) terms, and miRNAs, we also utilize circRNA association 
information about GO terms and miRNA. These abundant biological materials support us 
to explore the potential relationship between circRNA and disease entirely. The association 
data of circRNA-GO and circRNA-miRNA were obtained from CircFunBase through web 
crawler technology and applied to construct the two’s association matrices, Sg and Sm.

The circRNA functional similarity model includes three aspects: disease, Go terms, and 
miRNA. We use the Jaccard similarity coefficient to measure the similarity score. The dis-
ease-based score of circRNA cm and circRNA cn can be calculated by the following formula:

where TD(cm) denotes the binary vector formed by the mth row in matrix Sd . For cm and 
cn , their functional similarity score based on GO terms can be calculated by:

(1)CS(cm, cn) =
l(cm)+ l(cn)− costmin

l(cm)+ l(cn)

(2)CFdis(cm, cn) =
|TD(cm) ∩ TD(cn)|

|TD(cm) ∪ TD(cn)|

(3)CFgo(cm, cn) =
|TG(cm) ∩ TG(cn)|

|TG(cm) ∪ TG(cn)|

Table 6  Statistics of the constructed dataset

Dataset No. circRNAs No. diseases No. known 
associations

Association 
density

CircFunBase 2957 67 2984 0.0150

circR2Disease 533 89 612 0.0129

http://www.circbase.org/
http://www.circbase.org/
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where the binary vector TG(cm) is the mth row of the correlation matrix Sg . The similar-
ity score of cm and cn based on miRNA can be calculated as follows:

where TM(cm) represents the mth row of the association matrix Sm . To utilize the above 
three functional similarities at a comprehensive level, we obtain the final circRNA func-
tional similarity by taking the average value of them, which is computed by:

CircRNA GIP kernel similarity

Gaussian interaction profile (GIP) kernel similarity has been widely applied to extract the 
network topology information to predict the interaction between biomolecules. Accord-
ing to the biological hypothesis that functionally comparable circRNAs are inclined to 
be associated with semblable diseases, we calculate the GIP kernel similarity between 
circRNAs through the circRNA-disease adjacent matrix Sd . The calculation formula for 
circRNA cm and circRNA cn is as follows:

where δc is the parameter of kernel bandwidth, and nc denotes the number of circRNAs.

Disease GIP kernel similarity

Many studies have utilized GIP similarity to measure the similarity between diseases 
because the more similar diseases are, the more similar their correlations with circR-
NAs. The GIP similarity for disease dm and disease dn can be calculated by:

where δd is the width parameter, TC(dm) denotes the binary vector formed by the mth 
column in the association matrix Sd , and nd denotes the number of diseases.

Disease semantic similarity

To construct the semantic similarity model, we use MeSH, a database that supplies a 
meticulous classification scheme and can be got from (https://​www.​ncbi.​nlm.​nih.​gov/​
mesh/). The relationships between diseases can be expressed as a directed acyclic graph 

(4)CFmi(cm, cn) =
|TM(cm) ∩ TM(cn)|

|TM(cm) ∪ TM(cn)|

(5)CF(cm, cn) =
CFdis(cm, cn)+ CFgo(cm, cn)+ CFmi(cm, cn)

3

(6)CG(cm, cn) = exp −δc�TD(cm)− TD(cn)�
2

(7)δc =
1

nc

nc
∑

m=1

�TD(cm)�
2

(8)DG(dm, dn) = exp
(

−δd�TC(dm)− TC(dn)�
2
)

(9)δd =
1

nd

nd
∑

m=1

�TC(dm)�
2

https://www.ncbi.nlm.nih.gov/mesh/
https://www.ncbi.nlm.nih.gov/mesh/


Page 13 of 18Deng et al. BMC Bioinformatics          (2022) 23:427 	

(DAG), where nodes represent diseases and edges represent their associations. If a dis-
ease k is in the DAG of disease d, its contribution Gd(k) to d is as follows:

where µ is the contribution element. According to the previous paper by Wang et  al. 
[38], we set its value to 0.5. For disease dm and disease dn , their first semantic similarity 
model DS1(dm, dn) can be calculated by:

where Ndm is defined as the set of diseases in the DAG of disease dm . However, model 
DS1 only considers the correlation between the layers in disease DAG and ignores the 
fact that different diseases appear in DAGs at various times. Thus, we construct the sec-
ond disease semantic model, which calculates the semantic contribution value by the 
following formula:

where n(DAGs(k)) indicates the number of DAGs including disease k, and n(dis) indi-
cates the total number of all the diseases. We can calculate the semantic similarity score 
of disease dm and disease dn according to the second model as follows:

MSPCD model

The MSPCD model employs hierarchical neural networks to reveal the latent assoica-
tions between circRNAs and diseases. In this part we will introduce the implementation 
process of MSPCD in detail.

Multi‑source information fusion

In the aforementioned sections, we have acquired circRNA sequence similarity, circRNA 
functional similarity, circRNA GIP similarity, disease GIP similarity, and disease seman-
tic similarity. To fully take advantage of data from different sources, we need to fuse the 
complex similarity information. A better descriptor of the relationship between circR-
NAs and diseases can help us dig deeper into circRNA-disease associations.The flow 
chart is showed in Fig. 8.

The integrated similarity of circRNA can be gained by combining circRNA sequence sim-
ilarity CS, circRNA functional similarity CF, and circRNA GIP similarity CG. In view of the 
fact that some circRNAs in the circRNA-disease matrix Sd lack the sequence information 
required for the experiment, we define the binary flag value FQ to represent the two oppo-
site situations. If the value of FQm−n is 1, it means that circRNA cm and circRNA cn have 

(10)Gd(k) =

{

max
{

µ ∗ Gd

(

k ′
)

| k ′ ∈ children of k
}

if k �= d
1 otherwise

(11)DS1(dm, dn) =

∑

k∈Ndm∩Ndn

(

Gdm(k)+ Gdn(k)
)

∑

k∈Ndm
Gdm(k)+

∑

k∈Ndn
Gdn(k)

(12)G′
d(k) = log

(

n(dis)

n(DAGs(k))

)

(13)DS2(dm, dn) =

∑

k∈Ndm∩Ndn

(

G′
dm

(k)+ G′
dn(k)

)

∑

k∈Ndm
Gdm(k)+

∑

k∈Ndn
Gdn(k)
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sequence similarity. Otherwise, FQm−n is 0. The fusional similarity matrix of circRNA is 
defined by the following formula:

For diseases, we adopt GIP similarity GS, semantic similarity DS1 and DS2 to measure 
the integrated similarity. Since some disease pairs have no matching semantically similar 
association, the binary flag value FS is defined to distinguish different situations. If there 
is a semantic similarity of disease dm and dn , the value of FSm−n is 1; otherwise, it is 0. 
The fusional similarity matrix of disease is defined as follows:

Extract high‑order features of circRNA and diseases

There are noise and redundancy in the fundamental features. Designing more efficient fea-
tures to characterize circRNAs and diseases excellently benefits the performance of the 
model. Therefore, we take the original characteristics as input and pass them through three 
layers of fully connected neural networks to extract the dense latent features of circRNAs 
and diseases, respectively. The activation function rectified linear unit (ReLU) is adopted in 
the layers mentioned above.

We use m to represent the indexes of fully connected layers. The value of m in this section 
is 1, 2, or 3. e represents the initial input vectors of circRNAs. wem and bem respectively rep-
resent the weight coefficient and bias of the corresponding layer. For circRNAs, the output 
of each connected layer can be expressed as follows:

(14)CV (cm, cn) =

{

CS(cm,cn)+CF(cm,cn)
2

if FQm−n = 1

CG(cm, cn) if FQm−n = 0

(15)DV (dm, dn) =

{

DS1(dm,dn)+DS2(dm,dn)
2

if FSm−n = 1

DG(dm, dn) if FSm−n = 0

(16)Oem = ReLU
(

wemOe(m−1) + bem
)
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Fig. 8  Fuse multi-source data to obtain circRNA similarity and disease similarity
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If m is 1, then Oe0 is equal to e. Likewise, f represents the primary input vectors of the 
diseases. wfm and bfm respectively represent the weight coefficient and bias of the cor-
responding layer. The output of each connected layer for diseases can be expressed by:

Of 0 is equal to f when the value of m is 1. The outputs of the third layers, Oe3 and Of 3 , are 
the complicated high-level features of circRNAs and diseases.

Feature interaction by the dot product

So far, for any circRNA i and any disease j in the data set, we respectively project their 
initial feature vectors into N*1-dimensional high-order feature vectors, CH and DH. The 
values of CH and DH’s corresponding positions are multiplied to learn the interaction 
feature vector CD between circRNA i and disease j, and its dimension is also N*1. We do 
not directly use interactive characteristics to predict the correlation between circRNA 
i and disease j but concatenate them with the high-order feature CH of i and the high-
order feature DH of j. The generated vector is adopted to represent the circRNA-disease 
pair i − j , which is defined as follows:

Predict circRNA‑disease associations by DNN

We send the feature vectors acquired above into three fully connected layers. ReLU is uti-
lized as the activation function of the first two fully connected layers, and the last activation 
function is sigmoid to get the ultimate binary results. VG denotes the matrix composed of 
all the feature vectors generated in the previous step. It is also the input of the fourth fully 
connected layer. ŷ denotes the output of the sixth layer, that is, the predicted label values.

where w4 , w5 , w6 are the weights of the corresponding connection layer. b4 , b5 , b6 are the 
biases of the corresponding connection layer. Before training the model, we notice that 
the size of the constructed cirRNA-disease association matrix Sd is 2597*67, but there 
are only 2984 associations in Sd. To avoid the impact of unbalanced samples, we ran-
domly pick 2984 negative samples from the remaining unverified associations to reach 
the identical quantity as the positive samples. The selected negative set is not strictly 
credible, and there may be unproven positive associations. But the influence is negligible 
because they only occupy a tiny proportion in the whole negative sample set. The flow 
chart of MSPCD is shown in Fig. 9.

(17)Ofm = ReLU
(

wfmOf (m−1) + bfm
)

(18)VGi−j =





CHi

CDi−j

DHj





(19)O4 = ReLU(w4VG + b4)

(20)O5 = ReLU(w5O4 + b5)

(21)ŷ = sigmoid(w6O5 + b6)
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Evaluation metrics

To evaluate the performance of MSPCD, we choose five-fold cross-validation. First, the 
dataset is divided into five subsets. Then, four subsets are used for training set and one 
subset for testing. We repeat that process until all subsets have used for test set. We 
choose AUC​, accuracy, precision, recall, and F1_score as the evaluation indicators and 
take the average values of five experimental results as the final result. AUC​ is the area 
under the ROC curve and could be regarded as the probability that the predicted score 
of positive samples is greater than that of negative examples. The remaining indicators 
are as follows:

where TP and TN are the numbers of circRNA-disease association pairs and non-association 
pairs which are correctly identified, respectively; FP and FN are the numbers of circRNA-dis-
ease association pairs and non-association pairs which are incorrectly identified, respectively.

(22)Accuracy =
TP+ TN

TP + FN + FP + TN

(23)Precision =
TP

TP + FP

(24)Recall =
TP

TN + FN

(25)F1_score =
2×Precision×Recall

Precision+ Recall

CircRNA similarity

...

...

...

Diesease similarity

Interaction feature

...

...

...

Output

CircRNA high-order feature Disease high-order feature

...

...

...

Dot product 
Disease high-order featureCircRNA high-order feature

Fig. 9  Overview of our proposed MSPCD method for predicting circRNA-disease assoications. Firstly, it takes 
the similarity of circRNA i and disease j as input and outputs their high-order non-linear features through 
three fully connected layers. Secondly, we use the dot product to acquire the high-level interactive feature 
of i and j. The result and the high-order features are concatenated to generate a new vector fed into DNN to 
finally realize the association prediction between circRNA and disease
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We implement MSPCD in Keras 2.2.5. The batch size and learning rate are tuned by 
grid search in {32, 64, 128, 256, 512} and {0.0005, 0.001, 0.002, 0.0025} , respectively. The 
dimension of high-order features we search for is {8, 16, 32, 64, 128} . The number of 
training epochs is set to 200.
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