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Abstract 

Background:  Variation in omics data due to intrinsic biological stochasticity is often 
viewed as a challenging and undesirable feature of complex systems analyses. In fact, 
numerous statistical methods are utilized to minimize the variation among biological 
replicates.

Results:  We demonstrate that the common statistics relative standard deviation (RSD) 
and coefficient of variation (CV), which are often used for quality control or part of a 
larger pipeline in omics analyses, can also be used as a metric of a physiological stress 
response. Using an approach we term Replicate Variation Analysis (RVA), we demon-
strate that acute physiological stress leads to feature-wide canalization of CV profiles of 
metabolomes and proteomes across biological replicates. Canalization is the repres-
sion of variation between replicates, which increases phenotypic similarity. Multiple 
in-house mass spectrometry omics datasets in addition to publicly available data were 
analyzed to assess changes in CV profiles in plants, animals, and microorganisms. In 
addition, proteomics data sets were evaluated utilizing RVA to identify functionality of 
reduced CV proteins.

Conclusions:  RVA provides a foundation for understanding omics level shifts that 
occur in response to cellular stress. This approach to data analysis helps characterize 
stress response and recovery, and could be deployed to detect populations under 
stress, monitor health status, and conduct environmental monitoring.
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Background
Cellular stress response (CSR) is mediated through numerous molecular mechanisms to 
maintain homeostasis. For example, DNA damage repair, the unfolded protein response, 
mitochondrial stress signaling, and regulated cell death are all global stress pathways 
[1]. These programs are initiated by a diverse group of signaling molecules that includes 
metabolites and proteins. Metabolomics and proteomics methods are thus well suited 
for investigating CSR, as they capture global snapshots of an organism’s cellular state at 
a given time [2, 3]. This global phenotypic information, built from individual molecules 
helps explain not only stress, but also disease states, antibiotic or herbicide resistance, 

*Correspondence:   
bbothner@montana.edu

1 Department of Chemistry 
and Biochemistry, Montana State 
University, Bozeman, MT 59717, 
USA
2 Thermal Biology Institute, 
Montana State University, 
Bozeman, USA
3 Department of Plant Sciences 
and Plant Pathology, Montana 
State University, Bozeman, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05185-4&domain=pdf


Page 2 of 16Steward et al. BMC Bioinformatics           (2023) 24:87 

and evolutionary fitness [4] by characterizing phenotypic plasticity relative to baseline 
conditions [2, 5, 6]. Studies investigating CSR generally focus on a specific stressor, 
model system, or signaling pathway. In this study, we find that acute stress globally 
decreases molecular variability in plants, animals, and microorganisms and that such 
measures are useful for understanding CSR.

Standard omics workflows typically report variability among individuals and groups 
to quantify the reliability of an experiment. Multiple metrics are used including rela-
tive standard deviation (RSD) or Coefficient of Variation (CV), hierarchical clustering, 
principal component analysis (PCA), as well as multivariate statistical analyses [7]. CV 
is used in omics analyses to evaluate the repeatability of a biological assay or the pre-
cision of an experiment [8] and is reported as a ratio of the standard deviation to the 
mean. Variability in data is generally considered to be undesirable, and many methods 
have been employed to minimize intra-group variation among biological replicates [9–
11]. Nonetheless, intrinsic phenotypic variability among individuals in a population has 
been exploited to provide population-level insights into the fields of ecology, evolution, 
and genetics [12]. A recent study demonstrated that while the sigma factor σV lysozyme 
stress response is heterogenous in a Bacillus subtilis population, changing the amount of 
stress can push the population towards a more homogenous lysozyme resistance, reduc-
ing the phenotypic variability [13]. Historically, going back to 1862, Yablokov et al. used 
standard deviation and CV metrics to report ranges of phenotypic states within a popu-
lation of marine mammals and proposed that such data informs on how new taxa arise 
[14]. More recently, it was reported that the CV of metabolites decreased due to acute 
stress in animals and microorganisms [15].

We now expand this foundation by characterizing and comparing CV profiles of 
metabolome and proteome data from resting and stress-challenged organisms as a tool 
to describe CSR. Multiple publicly available and in-house omics datasets were analyzed 
to assess changes in CV profiles in plants, animals, and microorganisms, in response 
to acute stress. Changes in CV means and medians were determined, and CV distribu-
tion profiles were analyzed [16] to complete what we term Replicate Variation Analysis 
(RVA). RVA is described in the context of a standard metabolomics workflow, includ-
ing multivariate clustering and PCA analyses of treatment groups. The outcome of our 
analyses is a correlation between acute stress and reduced variation in global metabolite 
and protein profiles. This finding holds for a variety of organisms inclusive of both bacte-
rial and eukaryotic species, including plants.

Results
This project began with our previous observation that CV distributions of metabolomes 
(n = 8) derived from urine were altered during hemorrhagic shock in S. scrofa [17]. The 
focus of that work was to identify relevant stress biomarkers. Our reanalysis of the data 
revealed that metabolic variation among individuals was significantly reduced during 
hemorrhagic shock. A 2D PCA score plot indicated that data variability is canalized 
under stress with a reduction in both PC1 and PC2 (Fig. 1A). Further analysis revealed 
that stress is associated with a reduced median CV value (from 59 to 46% and a sig-
nificantly reduced mean CV (62–49%, Wilcoxon t-test < 0.001), and a CV distribution 
that is more narrow (Kolomogrov–Smirnov [K–S] test, d = 0.287, p < 0.001, Fig. 1B). To 
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establish if decreased variation in metabolite abundance among biological replicates is a 
general outcome of acute stress, we analyzed another metabolomics project that we had 
recently published.

Our attention turned to a data set that investigated the metabolic impact of stress-
inducing Bio Orthogonal Non-Canonical Amino Acid Tags (BONCAT) on the growth of 
Escherichia coli [18]. Batch cultures of E. coli were grown on minimal medium (Control) 
or with additions of methionine (MET), azidohomoalanine (AHA), or homopropargylg-
lycine (HPG) (n = 5). Intracellular metabolite profiles were analyzed using both MS and 
NMR-based metabolomics techniques. 2D PCA analysis of the MS metabolomics data 
(Fig. 2A) revealed that the control cultures displayed greater variation among biologi-
cal replicates than the stress treatment groups. When the same mass spectrometry data 
were analyzed using RVA, changes in the CV profiles between the control and amino 
acid tag additions were also observed (Fig. 2B). CV means and medians were decreased, 
and the distribution profiles narrowed with a sharper peak (Fig.  2C). The NMR data 
revealed a similar pattern in distribution between the control and HPG samples (K–S 
test, d = 0.28, p = 0.022) with a median decrease from 18% (control) to 13% (HPG) 
and a significant decrease in mean CV (control = 26%, HPG = 15%, Wilcoxon t-test, 
p = 0.0015; Fig. 2D). The RVA approach demonstrated that metabolomic dysregulation 
in HPG was greater than AHA, which was greater than MET, and all three treatments 
caused a decrease in variation relative to the control, a pattern mirrored in the NMR 
metabolomics data as well (Additional file  1: Fig. S1A). The RVA distribution profiles 
matched the differential abundance analysis of the original work, in which we showed 
that the HPG, AHA and MET additions resulted in significant perturbation to 19, 11, 
and 7% of the metabolites, respectively. RVA thus has the potential to be used as a meas-
ure of stress, as it correlates to dysregulation of analytes.

We next analyzed data from physiological investigations of the weedy plant Avena 
fatua (wild oat). To examine the global impact of this acute stress, we inflicted a heat 
shock treatment (40  °C, 24  h) on inbred seedlings, followed by metabolomics analy-
ses after increasing durations of recovery (n = 8). This study demonstrated that CV 

Fig. 1  Metabolic variation in response to hemorrhagic shock in a mammal. A Principal component analysis 
of control (red) and shocked (green) S. scrofa (n = 8). B Profile distribution plots of the CV of metabolite 
features from S. scrofa replicates from a control (black) and a shocked group (pink). The X axis shows the CV 
and the Y axis is the proportion of metabolites in the metabolome.  Adapted from Heinemann et al. (2014)
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Fig. 2  Metabolic variation in E. coli treated with non-canonical amino acids. A Principal component analysis 
of four different treatment groups from non-canonical amino acid treatment experiments on E. coli cell 
cultures with median displayed as a solid line (red = AHA treatment, green = control, blue = HPG and 
cyan = MET) (Steward et al. 2020). B Distribution plots of CV of mass spectrometry metabolite feature profiles 
for the non-canonical amino acid treated cultures of E. coli. C Table of CV statistics include the K–S d statistic 
for the different comparisons of the Control to the other groups, the CV mean and the CV median. D Profile 
distribution plots of the CV of NMR metabolite features from E. coli replicates from a control (black) and HPG 
treated (pink)

Fig. 3  Distribution of CV in A. fatua and temporal RVA analysis. A Distribution profile plot of metabolomic CV 
of A. fatua exposed to heat shock at 40 C (pink) and the control group (black). B Temporal CV profiles from 
heat stressed A. fatua. Time post-stress is from zero to 100 h of recovery. Table below: values of the K–S test. 
C Temporal CV profiles of methionine dependent cancer cell line supplemented with homocysteine (hcy) in 
the growth media, with timepoints collected after 2, 4, 8 and 12 h of acclimation. Table below: values of the 
K–S test
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distribution profiles were markedly altered soon after heat shock (Fig. 3A). Median CV 
values were reduced from 67% in untreated plants to 28% in heat shocked plants. Mean 
CV values also showed a significant change between untreated and heat shock groups 
(control = 76%, heat shock = 37%, Wilcoxon T test p < 0.001). As documented for S. 
scrofa and E. coli above, CV distributions were also significantly canalized following heat 
shock (K–S test, d = 0.46, p < 0.001).

The A. fatua data were also analyzed to assess the kinetics of recovery from stress 
and how this impacts CV distribution. Throughout the 100-h recovery period, CV dis-
tribution means increased from 37 to 76% (Wilcoxon t-test p < 0.001) while K–S test d 
values decreased from 0.45 to 0.13, indicating less difference from the unstressed CV 
distribution (Fig.  3B). During recovery, the CV distribution widened and became less 
peaked with the metabolome approaching a distribution that resembled data from 
untreated plants. As seen in the E. coli data above, the temporal CV distribution profiles 
of heat shock and recovery in A. fatua suggest that a qualitative measure of stress can be 
assessed based on CV distributions of the population.

Analysis of public omics data sets

To examine the generality of our approach and observations, a series of published data 
sets from other research groups was analyzed. A structured approach to finding and uti-
lizing data from public repositories was used: we selected studies that involved acute 
stressors that would result in a stress response or acclimation. Experimental regimes that 
included significant cell or organism die-off were excluded so that CSR was not compli-
cated by system or pathway shutdown that occurs during death. We then confirmed that 
post-processed data was supplied, to eliminate potential bias from processing through 
our in-house pipeline. A significant and unexpected limitation in identifying pertinent 
datasets was the lack of sufficient metadata and documentation so that data could be 
assigned to a specific experimental group and the origin of numerical values was clear.

Metabolomics data

We employed our RVA approach on MS-based metabolomics data that tracked the met-
abolic adaptations of a methionine sensitive cancer cell line [19]. The original experi-
ment involved replacing methionine in the growth medium with homocysteine, followed 
by an acclimatization period (n = 4). The cell lines stressed by the loss of methionine 
failed to thrive in its absence, but supplementation with homocysteine resulted in adap-
tations that enabled cell growth. RVA analyses of the metabolic mass spectral features 
demonstrated that the stress imparted by the absence of methionine resulted in sig-
nificant canalization of CV profiles (K–S test, d = 0.72, p < 0.001) (Additional file 1: Fig. 
S1B). This pattern was also reflected in mean CV values, which decreased from 15 to 6% 
(Wilcoxon t-test p < 0.001) for the control and stressed groups, respectively, and median 
CV values decreased from 15 to 4%.

This cancer cell dataset was of particular interest because it also included a temporal 
analysis of CSR. Adaptation to homocysteine was tracked over 12 h by periodic removal 
of metabolite samples from untreated and methionine-stressed cells. The CV profiles 
indicated that the peaked profile of early time points shifted to a wider distribution 
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resembling that of the control group, and KS-test d statistic changed from 0.72 to 0.22 
between the 2 h and 12 h time points, again reflecting a CV distribution that is trending 
towards the unstressed control (Fig. 3C).

The second external dataset came from a study in which Neocloeon triangulifer (mayfly 
adults) were fasted overnight and then subjected to heat stress or ambient temperature 
[20]. Metabolite samples (n = 6) were analyzed by LCMS. RVA analysis revealed subtle 
changes in CV values, which displayed a slight decrease in the mean from 23 to 20%, and 
median CV decrease (18.1% to 16.5%) from the ambient temperature insects as com-
pared to the heat shocked group. Although mean and median changes were small, CV 
distributions tended towards a canalized profile in the heat exposed group (K–S test, 
d = 0.078, p = 0.037) (Additional file 1: Fig. S1C). The difference in CV profiles reflect the 
impact of acute thermal stress, even under a shared fasting condition.

The next three datasets had acute stress treatments through diet or environmental 
adjustment, types of stress not previously discussed. The third external data set origi-
nated from a metabolomics study that investigated the impact of diet on Mus muscula 
(house mouse) intestinal digesta composition. The treated group was fed a low protein, 
low fat chow to mimic malnourishment, and mass spectrometry metabolite data were 
collected from control and diet-restricted mice (n = 4) [21]. RVA analysis demonstrated 
a clear change in CV distribution profiles (KS-test, d = 0.48, p < 0.001), with a change 
in median CVs from 48 (control) to 21 (diet) and mean CVs (control = 48%, diet = 21%, 
Wilcoxson’s t-test < 0.001) (Additional file  1: Fig. S2A). The fourth and fifth datasets 
originated from a study in which Haliotis discus hannai (sea abalone) (n = 9) had been 
acclimated to either high or low temperature and then subjected to heat shock or no 
heat treatment, and mass spectrometry metabolite profiles were compared [22]. When 
analyzed using RVA, the CV distribution of heat-shocked, cold-acclimated abalone was 
significantly lower than control: control 29%, heat shock 24% (Wilcoxon t-test, p < 0.001) 
and the median CV decreased from 25 (control) to 20 (heat shock) (KS-test, d = 0.18, 
p < 0.001) (Additional file  1: Fig. S2B). High temperature-acclimated abalone groups 
exhibited a significant change in CV distribution profiles in response to heat shock (KS-
test, d = 0.077, p = 0.033), representing a more narrowed distribution for the heat shock 
group, though the CV means were similar (Additional file 1: Fig. S2B). Together, re-anal-
ysis of the mayfly and high temperature-acclimated abalone data highlight that RVA pro-
files can detect even small changes reflecting intra-group metabolome variation and CV 
distribution changes imparted by acute stress, even after a stress acclimation period.

Proteomics data

We next set out to establish whether the canalization of variation following acute stress 
could be observed in proteomics data sets. We first looked at data from an in-house pro-
teomic study investigating E. coli cell cultures grown under aerobic or anaerobic condi-
tions (n = 4). 2D PCA score plots indicated less variation across both PC1 and PC2 in the 
anaerobic group (Fig. 4A), while RVA revealed a significant difference in CV distribution 
(K–S test, d = 0.19, p < 0.001) as well as a trending towards smaller CV mean (7.7% and 
6.6%) and CV median (6.7% and 5.3%) for the anaerobic group (Fig. 4B). We followed 
this analysis by mining the Pride proteome archive database [23] to search for additional 
external examples, including an investigation of 48-h PEG-induced drought stress on 
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Triticum aestivum L (bread wheat) (n = 3) [24]. Our RVA analysis demonstrated reduced 
CV distributions in drought-stressed proteome profiles (K–S test, d = 0.47, p < 0.001), 
with changes in mean and median CV values in the control group (mean = 42%, 
median = 29.8%) as compared to the stressed group (mean = 25%, median = 11.1%, Wil-
coxon t-test, p < 0.001; Additional file 1: Fig. S3). Thus, both prokaryotic and eukaryotic 
proteome datasets provide evidence that a reduction in intra-group variation in response 
to acute stress applies to diverse classes of omics data.

We also tested a second proteomics data set from an in-house project. The experiment 
challenged Methanocaccous voltae to grow on different sources of iron and sulfur [25]. 
A comparison of M. voltae grown on the canonical source of iron and sulfide (Fe(II)/
HS−) versus pyrite (FeS2) revealed a decrease in the CV of protein abundances when 
the cells were required to mobilize Fe directly from the mineral pyrite. The CV distribu-
tions between the FeS2 and the Fe(II)/HS− proteomes were significantly different (KS 
test, d = 0.27616, p < 0.001) (Additional file 1: Fig. S4). The mean and median of the FeS2 
cultures (mean = 18.5, median = 13.2) were also decreased compared to the Fe(II)/HS− 
cells (mean = 25.8, median = 25.5) as 881 of 1242 proteins had a smaller CV (Wilcoxsons 
t-test < 0.001). These data supported our model of reduced variation in response to acute 
stress because growth on pyrite represents an energetic challenge for methanogens [25, 
26].

The deep coverage and compact proteome of M. voltae present an opportunity to gain 
insight to proteins and pathways responsible for the reduced CV under stress. Path-
way analysis through the lens of RVA highlighted that in the pyrite condition, proteins 

Fig. 4  RVA of proteomics data and simulation analysis. A Principal component analysis of proteomic data 
from anaerobic and aerobic E. coli cultures, shown in green and red respectively. B CV distribution plots for 
anaerobic (pink) versus aerobic (black) E. coli cultures. C, D Simulated data with 3, 6, 10 or 20 replicates using 
50, 500 or 5000 features. The standard deviation was modeled at 0.5 of the mean (C) and 0.23 of the mean (D)
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associated with stress response as well as iron/sulfur trafficking and storage had a 
decreased CV. A deeper look into stress-related proteins with a lower CV in the pyrite 
cultures showed they were part of biological (CRISPR) and environmental stress (heat 
shock/universal stress response) pathways. There were 14 stress-related proteins in the 
sulfide cultures, that had a lower CV compared to the pyrite condition, which are pri-
marily involved in DNA repair and unfolded protein response. The other proteins with a 
lower CV in the sulfide condition were broadly involved in transcription and translation. 
Together, these proteomics data suggest that cellular stress response becomes more uni-
form through canalization of the important pathways.

Exceptions to the model

Through mining the Metabolomics Workbench data repository, we determined that not 
all datasets exhibit this relationship between variation and stress. Three of the metab-
olomics datasets examined did not display a significant change in CV distribution 
between control and treatment groups. After a thorough analysis of experimental design, 
the exceptions were classified into two categories. The first category was for metabo-
lomics analyses conducted using targeted rather than global approaches. This was the 
case in an analysis of isotopically labeled carbon in 256 specific metabolites to evalu-
ate heat shock in Caenorhabditis elegans (nematode) [27]. CV distributions of the data 
from heat shocked and control groups were not significantly different (K–S test, d = 0.04, 
p = 0.83). Indicating that CV canalization is not universally present across metabolic 
pathways. An NMR metabolomics study analyzing cadmium exposure in Danio rerio 
(zebrafish) embryos did not show a difference in CV distribution between control and 
treatment groups (K–S test, d = 0.27, p = 0.17) [28]. As with the nematode study, this was 
a targeted analysis in which only 33 zebrafish metabolites were measured. This raises the 
important point that not all metabolites or pathways will show canalization. We hypoth-
esize that targeted analyses may miss canalization because not all pathways need to dis-
play the effect in order to change the overall CV of a given class of biomolecules.

Other exceptions to the stress-induced CV profile changes involved chronic rather 
than acute stress. A blood plasma metabolomics study of Chronic Fatigue Syndrome 
(CFS) in both male (control = 18, CFS = 22) and female human (control = 23, CFS = 21) 
patients revealed that the CV distribution significantly increased in patients suffering 
from chronic fatigue compared to healthy control subjects (males: KS-test, d = 0.10, 
p < 0.001; females: KS-test, d = 0.10, p < 0.001), and the mean values increased slightly as 
well (males: 32% to 34%; females: 36% to 39%). Given our observations that the period 
of stress and/or recovery time impacts CV distribution, it is possible that in contrast to 
acute stress, chronic stress may result in an opposite trend and a corresponding increase 
in CV distribution patterns.

Simulations and mean–variance relationships

The fact that targeted or less than global data failed to display canalization was worth 
further investigation. NMR datasets typically report on tens to hundreds of metabolites, 
while mass spectrometry-based proteomics and metabolomics data set usually contain a 
thousand or more spectral features. We hypothesized that the number of features com-
prising the CV distribution may affect statistical power to discern differences between 
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data sets. To test the impact of data characteristics on RVA, authentic CV profiles were 
simulated by varying feature number (50, 500, and 5000), replicate number (3, 6, 10, and 
20), and the ratio of feature mean to standard deviation. These values were selected as 
they are reasonable representations of different omics experimental designs. To begin, 
a CV profile was simulated from individual feature means and standard deviations from 
the mayfly data [20]. The CV profile was then randomly sampled 1000 times varying the 
number of features and replicates. Calculating the correlation coefficient between the 
“known” and sampled CV distributions revealed that more replicates in the experiment 
and a smaller ratio of standard deviation to the mean improves accuracy (Fig.  4C,D). 
Unexpectedly, the number of features is not a predictor of accuracy of CV distribu-
tion calculations as we had hypothesized. The number of biological replicates and the 
variance of a specific feature, however, are primary considerations. The power of RVA 
to detect a canalization of CVs positively correlates with the number of biological 
replicates.

A final test was performed to determine if the canalization of CVs due to stress could 
be the result of a technical artifact. The most likely source for introduction of an error is 
in the measurement of feature intensity, as observed in RNA-seq studies [29]. It is com-
mon for instruments to more accurately record signals for high intensity features. If this 
was the case, there would be a negative relationship between the variances and means 
of features using the data presented here. Analysis of the relationship between the mean 
and variance [30] in the mayfly dataset revealed the opposite trend. There was a very 
strong positive linear relationship between mean and variance (Additional file 1: Fig. S5) 
in both control and stress conditions. Therefore, we conclude that the CV is an appropri-
ate statistic for standardizing these data for comparisons.

Discussion
The analysis presented here identifies a correlation between variability of biological rep-
licates and cellular stress that can be quantified in omics data. By repurposing CV as a 
statistic of merit, a stressed phenotype (phenome) was identified. This suggests that our 
RVA method can help to characterize CSR and to assess the presence and recovery from 
stress in biological systems.

Reduced variation in a population may be an unappreciated property of the phe-
nome. A metabolic bottleneck or convergence (i.e. a single optimum solution to 
resource use) [31–33] is one possible mechanism to explain this behavior. We also 
propose that the change could be less of an active CSR pathway initiation and more 
of a passive reaction where ancillary metabolic pathways are suppressed in the per-
turbed organism. in this scenario, lack of nutrients or presence of negative factors 
(stress) on the system activates CSR and a down-regulation of other pathways to miti-
gate the physiological effects of stress [34]. This is consistent with studies that show 
trade-offs in energy allocation to alleviate competing physiological tasks during food 
scarcity is associated with physiological variation [35]. The proteomics data presented 
here for M. voltae grown on pyrite2, a less bioavailable source of Fe and S [25], fits the 
convergence model. RVA reinforced the idea that cells grown on pyrite were under 
stress, because the CV profile was significantly smaller than cells grown on iron and 
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sulfide. In this case, M. voltae appeared to access classic stress management path-
ways including heat shock response, unfolded protein response and universal stress 
response [36]. Importantly, proteins from all of these categories had smaller CVs in 
the stressed group.

The mechanisms that result in canalization remain unknown; however, the ability 
to observe and quantify a population-level response provides a valuable perspective 
on the phenome. Whether it is activating CSR, turning down auxiliary pathways or a 
combination of both, our analyses demonstrate that acute stress can lead to decreased 
variation in omics data. At a deeper level, changes in population CV could be due to 
a gradient of CSR or temporal variations in stress response at the level of individuals. 
Single cell analysis of Xenopus (clawed frog) oocytes investigated this idea, by study-
ing activation of the MAPK cascade to progesterone [37]. Ferrel et al. determined that 
patterns of protein phosphorylation in the population exhibited a bimodal distribu-
tion, with individuals responding to stress not gradually, but as if a switch had been 
flipped [37]. Research along this line, using RVA, will help to answer an ongoing and 
fundamental question about CSR: does it function as a rheostat or a switch? Addi-
tionally, RVA provides a finite characterization that can help identify the physiologi-
cal mediators responsible for the canalization of a stressed phenotype.

CV as a global bottom-up statistic holds much potential; however, it is not without 
limitations. As we have shown, not all data sets follow the trend outlined here. Com-
monalities of studies that did not have reduced variability in “stress” groups included the 
presence of chronic stress and the use of a targeted rather than nontargeted analytical 
approaches. Chronic stress on a system is a known cause of deleterious mutations that 
lead to homogeneity and can result in disease, cancer and even death [38]. Data that 
support a reduced CV are from systems under acute stress that did not cause overt cellu-
lar death, an immediate disease state, or permanently altered CSR. For the wild oat and 
cancer cell data, a temporal RVA analysis showed that dampened CSR occurs in paral-
lel with increased CV profiles that trend towards controls. We hypothesize that stress 
pathways will have specific time dependencies, which could explain why a change in CV 
distribution is not observed in some experiments. Further investigation into temporal 
response and return to a non-stressed phenotype are exciting topics for future research.

The use of RVA along with the standard statistical workflow for omics adds a new 
dimension to the data, especially where standard models requiring homogeneity of 
variances are not appropriate. We believe RVA will prove to be an important metric 
for the rapidly expanding field of phenomics. Located at the intersection of metab-
olomics, proteomics, and genomics, phenomics is at the forefront of human health 
and agricultural research. RVA helps describe the phenome of a population and is 
straightforward to generate. Upon further development, RVA could potentially be 
used as a predictive tool to pinpoint early changes in metabolite or protein levels that 
are indicative of stress or future disease. RVA also has implications at the juncture 
of stress response and resistance. It has been shown that repeated exposure to acute 
stress can result in long term phenotypic changes, as observed in antibiotic-resistant 
E. coli populations, herbicide-resistant weedy species[39], and prolonged stress adap-
tation in Drosophila melanogaster [39–41]. The nuances of the relationship between 
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intra-population variability (the variome) and stress response are a gap in knowledge 
and a promising area for additional study.

Methods
For previously published data, experimental details can be found in the respective pub-
lications. The Sus scrofa study analyzed machine learning techniques to identify bio-
markers of hemorrhagic shock. Changes in CV were noted in this paper, but not further 
analyzed [17]. The effect of Bio Orthogonal Non-Canonical Amino Acids on E. coli was 
evaluated at the metabolite level, analyzing the addition of either AHA, HPG or Methio-
nine [18]. Methionine sensitive cancer cells were subjected to methionine starvation 
with homocysteine replacement in the media, with the metabolite changes tracked over 
time [19]. The next study focused on heat shock treatment on mayflies to analyze stress 
tolerance, using GC–MS for metabolomics analysis [20]. A mouse model used to evalu-
ate malnutrition was the next study, analyzing MS based metabolome changes [21]. The 
last two examples used in the metabolomics section came from a study on heat stress 
in abalone, studying metabolome effects of heat stress after a high or low temperature 
acclimation [22]. The proteomics data set utilized here analyzed drought stress on bread 
wheat [24].

Metabolomics analysis of heat shocked Avena fatua

Avena fatua plants were grown from seeds as described in Burns et al. [42]. After three 
weeks of growth, plants (n = 8) were placed in a temperature-controlled chamber for 
24 h at 40 C. Shoots were harvested at 0, 6, 24, 48, and 100 h after heat shock, immedi-
ately placed in liquid nitrogen, and stored at − 80 °C for metabolite extraction. Frozen 
tissue was ground for 1 min in liquid N2 with a mortar and pestle. The powdered tissue 
(approximately 150  mg per sample) was suspended in methanol (MeOH) at 70  °C for 
15 min. Samples were vortexed for 1 min and then centrifuged (25,000 g, 10 min, 4 °C) to 
remove cellular debris from the soluble fraction. To precipitate proteins from the solu-
ble metabolite fraction, ice cold acetone was added at a ratio of 4:1 acetone: extract and 
stored at − 20  °C overnight, followed by centrifugation (25,000 g) at 4  °C for 10 min. 
The resulting supernatant fraction was dried and stored at − 80 °C. Prior to analyses by 
LC–MS, samples were resuspended in 40 μL of 50% HPLC grade water / 50% MeOH. 
MS-based analysis of polar metabolites was accomplished using an Agilent 1290 ultra-
high performance liquid chromatography (UPLC) system coupled to an Agilent 6538 
Accurate-Mass quadrupole Time of Flight (TOF) mass spectrometer, using a HILIC 
column (Cogent diamond hydride HILIC 2.2 µM, 120 A, 150 mm × 2.1 mm Microsolv, 
Leland, NC) for metabolite separation. The gradient for separation started with a hold 
of solvent B (0.1% formic acid in acetonitrile) for 2 min at 50%, followed by a gradient 
ramp of 50–100% B over fourteen minutes. Then an isocratic hold at 100% solvent B for 
one minute, with a return to initial conditions. Mass analysis was conducted in positive 
mode with a capillary voltage of 3500 V, dry gas temperature of 350 °C at a flow of 8 L/
min and the nebulizer was set at 60 psi, injecting 2 µL sample volumes, with blanks run 
intermittently between samples. Data acquisition parameters were as follows: 50–1000 
mass range at 1 Hz scan rate with a resolution of 18,000. Accuracy based on calibration 
standards was approximately 5 ppm.
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Proteomic analysis of Escherichia coli grown under aerobic or anaerobic conditions

Proteomics analysis of aerobic versus nonaerobic E. coli cultures was carried out on 
MG1655 (K12) in LB media at 37 C. Four replicate cultures were started with a 5 μL 
inoculation from an overnight culture and grown under an atmosphere of nitrogen 
or ambient air until harvest at mid-log phase (0.4 OD for the aerobic samples and 
0.3 OD for anaerobic samples). Cells were pelleted using centrifugation and proteins 
extracted immediately. The cell pellets were resuspended in 0.1 M Tris–HCL pH 7.5 
buffer with 8 M urea and subjected to three freeze/thaw cycles in liquid Nitrogen, 
followed by ultrasonication for 5 min (Biologix -Model 13,000). Samples were cen-
trifuged and the resulting supernatant was removed and proteins precipitated from 
it using ice cold acetone and stored at – 20 C for 1 h. The precipitated proteins were 
centrifuged, the supernatant was removed and the protein pellet was resuspended in 
0.1 M Tris–HCL pH 6.8, 5 um EDTA, 50 mM N-ethylmaleimide in 6 M urea. This 
sample was transferred to a 3 K MWCO Nanosep centrifuge device and a modified 
FASP digestion was carried out. The sample was reduced with an excess of DTT and 
alkylated using 50  mM Iodoacetamide. The samples were washed four times with 
50  mM ammonium bicarbonate pH 7.8 and then digested using sequencing grade 
Trypsin at a 20:1 protein: protease ration for 18  h. Samples were run on a Dionex 
Ultimate 3000 Nano UHPLC equipped with an Acclaim PepMap 100 C18 trap col-
umn (100 μm × 2 cm) and an Acclaim PepMap RSLC C18 (75 μm × 50 cm, C18 2 μM 
100A) for separation. Mobile phase A was 0.1% formic acid in HPLC grade water 
and B was 80/20 acetonitrile: water. Peptides were separated at 0.6 nL/min. using 
a linear solvent gradient from 3–30% B over 120 min. The LC system was coupled 
with a Bruker maXis Impact with captive spray ESI mass spectrometer was used 
for data collection of spectra from 150 to 1750 m/Z at a maximum rate of 2 Hz for 
precursor and fragment spectra with adaptive acquisition for highly abundant ions. 
Data dependent MS/MS was used to collect sequence information on the 5 most 
abundant ion per full scan. Data analysis was done using MaxQuant (v1.6.4.0) and 
Perseus (v1.6.4.10).

Mining of public data

Data was obtained from the Metabolomics Workbench [43] and the PRIDE proteom-
ics repository [23]. The archives were searched for data sets that matched “stress” in 
the keyword search. If the summary described an omics data set that evaluated a 
stress or perturbation and a control group, both with at least three biological repli-
cates, the uploaded data set was evaluated. If the data provided was in a raw format 
(e.g. “sample.d” datafile) the set was discarded in order to avoid potential bias from 
our in-house processing pipeline. If the data was in a final, processed tabular for-
mat and experimental conditions were clearly described, the data was used. Reasons 
for not using a data set included lack of clearly defined experimental and control 
groups, undecipherable sample codes, or incomplete data inclusion. Data sets that 
met the criteria of containing stress and control groups with at least three biological 
replicates, were evaluated by replicate variation analysis (Additional file 2: Table S3).
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Statistical analysis

CV statistics were calculated using the standard deviation and the mean of individual 
metabolites or proteins in a group. The standard deviation was taken as a ratio to the 
mean and reported as a percentage. This was done for every detected metabolite feature 
or protein to obtain the distribution of the omic population. Statistical analysis was car-
ried out in R [44] and distribution plots were made using ggplot2 [45] and ggridges [46], 
PCA plots, histograms of CV, distribution plots, and distribution statistics of mean and 
median were all calculated and plotted. A two sample Kolmogorov–Smirnoff (KS) test 
was utilized to analyze for the empirical distribution functions of the control and the 
treatment groups. The two sample KS test describes the differences between shape and 
location of the two distributions being tested using the d statistic with a calculated p 
value. A larger d statistic indicates a larger change between the two distributions being 
compared [16].

Simulated data analysis

The process of simulating these CV distributions requires two levels of simulations—
first, a simulation of the population level CV distribution and second, simulations of the 
individual replicates sampled from these CV distributions. Therefore, the “true” CV dis-
tributions across the population level were simulated first. For this, both the means and 
standard deviations were simulated for each omics feature. The Mayfly treatment dataset 
presented in Fig. 2 was used to parameterize simulations. The means were drawn from a 
normal distribution with a (1) mean equal to the log(mean) of the Mayfly dataset to dis-
allow negative values and (2) a standard deviation equal to the standard deviation of the 
log(mean) of the dataset. Each mean also required a corresponding simulated standard 
deviation. Within the Mayfly treatment dataset, the standard deviation varies from 0.02 
to 1.65x of its corresponding mean, with a mean standard deviation fold-change of 0.23. 
Therefore, we tested both 0.23-fold and 0.5-fold of the mean and 0.1 as the standard 
deviation to randomly assign each mean a corresponding standard deviation. Finally, the 
CV was calculated for each mean-standard deviation pair to create the “true” CV distri-
bution. Forty distributions were simulated.

Random sampling from each of the CV distributions was simulated as follows: For 
each mean and standard deviation pair, varied numbers of replicates were drawn, and 
the CV was computed. The Spearman’s correlation between the CV for these simulated 
samples and the “true” CV simulated in the first step was determined. The process was 
repeated 1000 times for each replicate and feature number combination.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​023-​05185-4.

Additional file 1. Figure S1. a Distribution plots of CV of NMR metabolite feature profiles for the non-canonical 
amino acid treated cultures of E. coli. b CV profiles of metabolites in methionine dependent cancer cells with 
methionine (MET) or homocysteine (Hcy). c CV profiles of metabolites from replicates of mayflies that were exposed 
to heat stress (pink) and the analogous control group (black). Figure S2. Undernourished mouse model studies 
and Temperature Acclimated Abalone. a Distribution plots of CV metabolite features from control mice (black) and 
malnourished mice (pink). b Distribution plots of CV metabolite features from replicates of cold (left panel) or high 
temperature (right panel) acclimated Haliotis discus hannai that were exposed to heat stress (pink) and the analo-
gous control group (black). Figure S3. Distribution profile plots of proteomic data collected on wheatleaf (black) 
and wheatleaf that has been exposed to drought stress using PEG (pink). Figure S4. Distribution profile plots of 
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proteomic data collected on M. voltae grown under canonical sulfide (Fe(II)/HS−) (black) and M. voltae that has been 
exposed to mineral stress through growth on pyrite (FeS2) (pink). Mean from 25.8 to 18.5% Median (shown) from 21.5 
to 13.2%. Figure S5. Relationship between feature mean and variance for control replicates from the mayfly data (a) 
and the heat stressed mayfly replicates (b).

Additional file 2. Table S1. Protein CVs. Table S2. Data set details. Table S3. Metabolomics workbench search.
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