
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo‑
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Lee et al. BMC Bioinformatics          (2024) 25:236  
https://doi.org/10.1186/s12859-024-05854-y

BMC Bioinformatics

expHRD: an individualized, 
transcriptome-based prediction model 
for homologous recombination deficiency 
assessment in cancer
Jae Jun Lee1†, Hyun Ju Kang2,4†, Donghyo Kim5†, Si On Lim3, Stephanie S. Kim6, Gahyun Kim6, Sanguk Kim5*, 
Jin‑Ku Lee2,3,4* and Jinho Kim6,7,8* 

Abstract 

Background: Homologous recombination deficiency (HRD) stands as a clinical indica‑
tor for discerning responsive outcomes to platinum‑based chemotherapy and poly 
ADP‑ribose polymerase (PARP) inhibitors. One of the conventional approaches 
to HRD prognostication has generally centered on identifying deleterious mutations 
within the BRCA1/2 genes, along with quantifying the genomic scars, such as Genomic 
Instability Score (GIS) estimation with scarHRD. However, the scarHRD method has limi‑
tations in scenarios involving tumors bereft of corresponding germline data. Although 
several RNA‑seq‑based HRD prediction algorithms have been developed, they mainly 
support cohort‑wise classification, thereby yielding HRD status without furnishing 
an analogous quantitative metric akin to scarHRD. This study introduces the expHRD 
method, which operates as a novel transcriptome‑based framework tailored to n‑of‑1‑
style HRD scoring.

Results: The prediction model has been established using the elastic net regression 
method in the Cancer Genome Atlas (TCGA) pan‑cancer training set. The bootstrap 
technique derived the HRD geneset for applying the expHRD calculation. The expHRD 
demonstrated a notable correlation with scarHRD and superior performance in predict‑
ing HRD‑high samples. We also performed intra‑ and extra‑cohort evaluations for clini‑
cal feasibility in the TCGA‑OV and the Genomic Data Commons (GDC) ovarian cancer 
cohort, respectively. The innovative web service designed for ease of use is poised 
to extend the realms of HRD prediction across diverse malignancies, with ovarian can‑
cer standing as an emblematic example.

Conclusions: Our novel approach leverages the transcriptome data, enabling the pre‑
diction of HRD status with remarkable precision. This innovative method addresses 
the challenges associated with limited available data, opening new avenues for utiliz‑
ing transcriptomics to inform clinical decisions.
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Background
The effective repair of DNA damage has been a crucial evolutionary mechanism for 
sustaining the DNA integrity of mammalian cells, given their constant exposure to 
a spectrum of endogenous and exogenous DNA-damaging events such as irradiation, 
free radicals, and mutagenic chemicals [1, 2]. A prominent form of DNA damage is the 
DNA double-strand break (DSB), which is fatal to cell survival if left unrepaired [3]. 
Consequently, eukaryotic cells have developed an intricate DNA–DSB repair machin-
ery characterised by two major mechanisms: homologous recombination (HR) and non-
homologous end joining (NHEJ) [4].

While NHEJ directly fuses damaged DNA segments without a template, HR syn-
thesises and recovers the lost DNA segments using a homologous chromosome as a 
blueprint [4]. Therefore, NHEJ primarily recovers numerous DSBs quickly, albeit with 
a higher error probability compared with that of HR. Cells with compromised HR fre-
quently resort to inaccurate and error-prone DNA–DSB repair mechanisms, imperilling 
genomic integrity [5]. Core molecules contributing to the HR pathway include BRCA1/2, 
ATM/ATR, RAD51, EMSY, and PTEN [6]. Dysfunctional HR-related molecules fre-
quently engender HR deficiency (HRD) [6, 7], which holds profound implications across 
various malignancies, including ovarian, triple-negative breast, prostate, and pancreatic 
cancers [8–10]. More importantly, HRD has earned status as a clinically verified com-
panion diagnostic (CDx) marker predicting therapeutic response to various anti-cancer 
agents, including platinum-based chemotherapies and poly ADP-ribose polymerase 
(PARP) inhibitors [11, 12]. Noteworthy among these inhibitors are olaparib, niraparib, 
and rucaparib, sanctioned for treating HRD-associated malignancies and demonstrating 
striking survival benefits, particularly in ovarian and triple-negative breast cancers with 
HRD [13–18].

Consequently, robust identification of HRD in cancer has become critical for tailor-
ing precision therapy strategies, especially in the context of PARP inhibition [11]. The 
predominant method for HRD detection entails identifying deleterious mutations in 
HR-related genes, mainly BRCA1 or 2 [19]. However, this method’s scope is limited, 
as BRCA1/2 mutations encompass less than half of HRD cases [20]. The detection of 
“genomic scars,” indicative of loss of heterozygosity (LOH), large-scale state transition 
(LST), and telomeric allelic imbalance (TAI), provides a long-term manifestation of sig-
nificant structural variations in HRD [21–23]. Myriad’s Mychoice CDx (MC-CDx) amal-
gamates BRCA1/2 mutations and genomic instability score (GIS), the sum of LOH, LST, 
and TAI, as a response indicator to PARP inhibitors and a prognostic factor in breast 
and ovarian cancer [22, 24]. Yet, even this method has limitations, as the GIS calcula-
tion algorithm basically relies on normalisation using corresponding matched germline 
data. In the clinic, normalisation using pooled germline data is applied in GIS calcula-
tion because germline DNA copy number data are frequently missing, which may lead to 
difficulty in diagnosing HRD status in particular cases.

Alternatively, transcriptomic profiling of HR pathways has revealed specific gene sig-
natures significantly correlated with HRD status. For instance, Peng et al. identified 230 
HR-associated genes by analysing differentially expressed genes between cells of WT 
and those with simultaneous knockdowns of BRCA1, RAD51, and BRIT1 genes in MCF-
10A cells [25]. Recent attempts at HRD-RNA algorithm development have adopted 
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logistic regression models for the prediction of HR-related genetic variants in ovarian 
and breast cancers using cancer transcriptome data [26]. Furthermore, the detection 
of aberrant transcripts has been suggested as a valuable diagnostic tool for identifying 
HRD tumours [27]. However, most existing methods for analysing HRD-specific genes 
rely on cohort-wise and clustering-based classifications, which pose limitations in clinic 
application as genetic diagnoses frequently require individualised assessment.

In this study, we developed a machine-learning-based algorithm that reliably corre-
lates with the scarHRD score through RNA-seq analysis of designated samples. Lever-
aging the pan-cancer cohort from the Cancer Genome Atlas (TCGA), we devised and 
validated this HRD prediction performance. A total of 356 genes were selected for 
genomic scar prediction by the elastic net regression and consecutive bootstrap meth-
ods. To enable n-of-1-style HRD predictions, we further developed the expHRD algo-
rithm by adopting single-sample geneset enrichment analysis (ssGSEA) methods, which 
extracts cohort-independent HRD predictions in the cancer transcriptome. We evalu-
ated the clinical feasibility of expHRD methods in TCGA-OV test sets and the Genomic 
Data Commons (GDC) ovarian cancer cohort [28]. Moreover, we developed a web 
server demonstrating the expHRD and predicted HRD scores by easily uploading the 
RNA-seq data of the users’ interests.

Methods
Data collection and GIS calculation

TCGA and PanCanAtlas data collection

A comprehensive dataset comprising 10,068 tumours across 35 distinct cancer types was 
assembled from TCGA pan-cancer cohort. SNP array data, processed through allele-
specific Copy Number Analysis of Tumour Samples (ASCAT2), was retrieved from 
the Genomic Data Commons Data Portal (https:// portal. gdc. cancer. gov). Additionally, 
whole transcriptomic sequencing (WTS) data, providing gene-level transcription esti-
mates in RSEM-normalised counts, were obtained from Firebrowse (http:// fireb rowse. 
org/).

For validation purposes, an exclusive set of GDC TCGA-OV samples (n = 112) was 
incorporated, distinct from the TCGA-OV samples (ovarian cancer; n = 287). WTS/
SNP array data and survival information were sourced from Xenabrowser (https:// xenab 
rowser. net/) and the GDC Data Portal (https:// portal. gdc. cancer. gov), respectively [29].

scarHRD calculation

Genomic instability, represented by scarHRD, was computed using the R package 
“scarHRD”, based on copy number segments derived from SNP array data [30]. The 
default parameters of the R package were utilised [23]. ScarHRD encompasses three sub-
types of genomic instability: LOH [31], LST [32], and TAI [33]. Specifically, LOH denotes 
the loss of a chromosomal region exceeding 15  Mb or entire chromosome depletion. 
LST is characterised by chromosome breaks, resulting in two separated regions exceed-
ing 10 Mb with a distance less than 3 Mb. TAI represents regions with allelic imbalances 
extended to the telomeric region.

https://portal.gdc.cancer.gov
http://firebrowse.org/
http://firebrowse.org/
https://xenabrowser.net/
https://xenabrowser.net/
https://portal.gdc.cancer.gov
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Development of an HRD prediction model

Processing of RNA‑sequencing data

For the training and test sets, gene expression data were sourced from FIREBROWSE 
across various cancer cohorts, utilizing RSEM-rawcount values. Normalization was per-
formed using DESEQ2 (version 1.34.0). Prior to normalization, we excluded genes lacking 
HGNC symbols and also filtered out lowly expressed genes as part of DESEQ2’s normaliza-
tion process. Furthermore, genes exhibiting zero expression levels were removed during the 
preliminary filtering stage. In case of TCGA samples, 20,052 gene were composed of RNA-
sequencing data which was already processed by the pipeline of RSEM-normalized counts, 
obtained from Firebrowse (http:// fireb rowse. org/). Additionally, the number of protein cod-
ing genes in GDC TCGA-OV samples were processed by the same pipelines of TCGA sam-
ples. AOCS samples were obtained from Gene Expression Omnibus (GSE209964), which 
was already processed by the Garsed et al. [34]. Sample annotation with batch process in 
AOCS consists of three parts (1: AOCS sample (n = 75), 2: MAOC sample (n = 30), and 
MMAC sample (n = 26)). The ‘Deseq2’ (ver 1.34.0) R package [34] facilitated the acquisition 
of normalized gene-expression data by VST normalization for test, validation, and AOCS 
sets. Additional batch effect remove in AOCS samples was done by ‘limma’ R packages [35].

Establishment of a machine‑learning model

Construction: Filtering based on differentially expressed gene (DEG) analysis yielded a set 
of 4436 genes associated with the scarHRD score’s continuous distribution. The machine-
learning model aimed to predict the HRD score (target values; Y) through gene-expression 
values (training data; X), employing regression algorithms. The efficacy of various meth-
ods—Ridge, Lasso, elastic net regression, Support Vector Machine, Gradient Boosting 
Model, and Multilayer Perceptron—was initially compared (Table S1).

-Ridge: A linear regression model incorporating L2 regularisation through a penalty term. 
The hyperparameter alpha (α) regulates the model’s regularisation strength.

Lasso: This estimation model entails L1 regularisation, effectively reducing the number of 
features. The hyperparameter encompasses the number of iterations needed to counteract 
overfitting or underfitting issues.

Elastic net regression: A composite of Lasso and Ridge, encompassing both L1 and L2 
regularisation. Hyperparameters encompass L1 and L2 penalties and the number of 
iterations.

Support Vector Machine (SVM): A supervised learning method for regression, SVM 
classifies samples by different functions using linear or radial basis functions. Hyperpa-
rameters include the regularisation parameter for both linear and RBF models.

min
w

||Xw − y||22 + α||w||22

min
w

1

2nsamples

||Xw − y||22 + α||w||1

min
w

1

2nsamples

||Xw − y||22 + αρ||w||1 +
α(1− ρ)

2
||w||22

http://firebrowse.org/
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Gradient Boosting Regressor: An ensemble method necessitating the learning rate 
as a hyperparameter. It involves repeated training steps to mitigate overfitting or 
underfitting, with significant features identified by the model.

Multilayer Perceptron: Utilising multiple layers, this model predicts target values, 
with layer count and constraint function serving as configurational parameters.

Performance evaluation of machine‑learning models

To comprehensively assess the efficacy of each machine-learning model, a range of 
classification metrics were employed, encompassing accuracy, specificity, sensitiv-
ity, precision, F-score, AUC-ROC, AUC-PR, and Matthews Correlation Coefficient 
(MCC) score. Distinct from conventional classification algorithms, we transformed 
the outcome of regression into a binary classification, distinguishing between positive 
and negative status (positive: scarHRD score ≥ 42, negative: scarHRD < 42). Subse-
quently, model performance was evaluated through a comparison involving confusion 
matrices.

The area under the ROC curve (AUC-ROC) and area under precision curves (AUC-
PR) were computed based on the sensitivity and (1−Specificity) curves, respectively.

The Lasso, Ridge, and Elascticnet models were initially trained using “GridSearchCV” 
from the Python library “Scikit-learn” with five-fold cross validation, obtaining optimal 
hyperparameters. Specifically, we tested the effect of the cross-validation process in 
Elastincnet from three-fold to seven-fold training to get the best performance of training 
with an R-squared score and the optimal number of selected gene sets, the second gene 
sets. All machine-learning training, cross validation, and performance comparison were 
performed using the Python library ‘Scikit-learn’ for the construction of models and the 
R package ‘MultipleROC’ for the AUC calculation, respectively (https:// jmlr. org/ papers/ 
v12/ pedre gosa1 1a. html).

Accuracy = TP + TN

TP + FP + TN + FN

Sensitivity = TP

TP + FN

Specificity = TN

TN + FP

Precision = TP

TP + FP

F1 score = 2TP

2TP + FP + FN

MCC = TP ∗ TN − FP ∗ FN√
(TP + FP) ∗ (TP + FN ) ∗ (TN + FP) ∗ (TN + FN )

https://jmlr.org/papers/v12/pedregosa11a.html
https://jmlr.org/papers/v12/pedregosa11a.html
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Machine‑learning prediction in the TCGA‑pan cancer cohort

For test set evaluation, 20% of samples were selected (n = 2027). Pearson’s correla-
tion between scarHRD and predicted HRD was calculated within the test set, and the 
two-sided t-test determined the P value. The mean square error (MSE) was calculated 
using scarHRD and predicted HRD values, yielding the following equations:

The root mean squared error (RMSE) was subsequently calculated using the Python 
library ‘Scikit-learn’.

Bootstrap process and expHRD calculation

Bootstrap process

To obtain robust HRD-related gene sets, the bootstrap procedure hinged upon elas-
tic net regression model outcomes, with an initial feature count of 2538 and relevant 
hyperparameters. The distribution of feature weights was based on the initial elastic 
net model. Initially, training samples were randomly chosen for 100 iterations, with 
duplication disregarded. Subsequently, the model was retrained with identical specifi-
cations, leading to feature weight determination. Features with non-zero values across 
at least 98 instances in 100 repetitions were selected.

Calculation of expHRD

Rooted in the single-sample gene set analysis (ssGSEA) method, expHRD computa-
tion entailed assessing the gene-expression pattern of individual samples. Gene sets 
derived from the bootstrap procedure constituted the basis for ssGSEA calculations. 
HRD-positive and HRD-negative gene sets contributed to the calculation using the 
following equation:

Each ssGSEA score was calculated from the R package ‘GSVA’ [36] with the func-
tion ‘ssGSEA’ and our selected positive and negative gene sets.

Survival analysis

Survival status data were sourced from the GDC Data Portal, aligned with the lat-
est follow-up version for each cancer type. The analysis involved two groups, catego-
rised based on scarHRD and expHRD. For this analysis, only the TCGA-OV and GDC 
TCGA-OV cohorts were considered. The scarHRD group criterion was established at 
a specific scarHRD score of 42 [37]. ExpHRD score criteria were determined by the 
best AUC score prediction outcome, employing the ‘scipy’ Python library for Pear-
son’s correlation and the ‘MultipleROC’ R package. Median survival, defined as the 
time at which survival probability reached 50%, was determined using Kaplan–Meier 

MSE(y, ŷ) = 1

nsamples

nsamples−1

i=0

(yi − ŷi)
2

expHRD = ssGSEA score in HRD positive − ssGSEA score in HRD neagative
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estimation. The log-rank test facilitated P value calculation for group comparison, 
and survival probability was reported with 95% confidence intervals.

Results
Development of the HRD prediction model using the transcriptome

A comprehensive dataset of 10,068 samples representing 34 cancer types from the 
TCGA-pan cancer cohort, encompassing both tumour and blood samples with SNP 
array copy number variation and WTS, was harnessed for training, development, and 
evaluation of the HRD prediction model (Fig.  1). The scarHRD score for each sample 
was derived by aggregating HRD-associated genomic scars—namely, LOH, LST, and 
TAI.

In a sequential manner, the dataset was stratified into two subsets: a training set 
(n = 8041) comprising 80% of the samples, and a test/validation set (n = 2027) compris-
ing the remaining 20%. The training set included 1422 HRD and 6619 HR-proficient 
(HRP) samples, while the test/validation set contained 353 HRD and 1674 HRP samples. 
Gene selection was executed by retaining 20,502 genes from RNA-seq data and filtering 
down to 4436 DEG based on scarHRD status within the TCGA-OV set—an essential 
component of the clinical HRD prediction algorithm evaluation.

Gene feature optimisation was accomplished through iterative machine-learning 
training employing elastic net and bootstrap methodologies. A total of 356 genes were 
meticulously chosen to facilitate the calculation of expHRD, which has applicability at 
the individual patient level in clinical contexts. Subsequent validation processes encom-
passed internal validation (TCGA-OC test, n = 58) and external validation (GDC Pan-
CanAltas, ovarian cancer, n = 112).

Performance evaluation of the HRD prediction model

The expression data of initially selected genes (n = 4436) from the pan-cancer train-
ing set were subjected to various linear regression models, such as Ridge, Lasso, elastic 
net regression, SVM, Gradient Boosting Regressor (GBM), and Multilayer Perceptron 

Fig. 1 Schematic representation of transcriptome‑based HRD prediction model development and validation. 
Schematic illustration describing the overall process of serial machine‑learning training and validation for the 
development of an HRD prediction algorithm in the cancer transcriptome
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(MLP), for the prediction of corresponding sample scarHRD scores (Table  S1). The 
gene count ranged from 862 to 4436, yielding R-squared values varying from 0.6375 to 
0.7364, dependent upon the regression models (Table 1). The R-squared value is indic-
ative of the predictive accuracy of our machine learning model, representing the pro-
portion of variance in the actual scarHRD scores that our model can explain. Notably, 
the elastic net regression model, among the regression options, exhibited the highest 
correlation with the scarHRD score and was subsequently chosen for refining the pre-
diction algorithm. Five-fold cross-validation demonstrated feature number saturation 
(n = 2538) and yielded a Pearson’s correlation coefficient (PCC) of 0.858 (P < 0.0001) and 
0.788 (P < 0.0001) in the TCGA-pan cancer and OV test cohorts, respectively (Fig. 2a). 
The Pearson’s correlation coefficient measures the linear correlation between the actual 
scarHRD scores and the HRD scores predicted by our machine learning model, provid-
ing insight into the strength and direction of this linear relationship.

Following elastic net regression, the R-squared values were as follows: pan-cancer, 
0.7364; ovarian cancer (OV), 0.592; and triple-negative breast cancer (TNBC), 0.4682. 
Similar conclusions were drawn from the performance metrics of various machine-
learning models for predicting HRD-high samples (scarHRD ≥ 42) within the TCGA-
OV test set (Table S2).

The PCC of the HRD prediction score with scarHRD was 0.8584 (P < 0.0001) in the 
pan-cancer test set. In most cancer types, excluding those with limited clinical signifi-
cance in relation to HRD status (e.g., cholangiocarcinoma, uveal melanoma, diffuse 
large B-cell lymphoma, testicular germ cell tumour), a significant correlation with the 
scarHRD score was observed (Fig.  2b, c). Notably, HRD prediction value in clinically 
relevant cancer types—such as OV, breast cancer (BRCA), TNBC, and prostate adeno-
carcinoma (PRAD)—displayed substantial correlations with scarHRD score (PCC > 0.7). 
Particularly in the case of TCGA-OV, a validation cohort with clinical relevance, the 
HRD prediction score showcased a significant and remarkable correlation with the 
scarHRD score (PCC = 0.7879, P = 2.1556e−13, Fig. 2c).

Bootstrap for feature optimisation of the HRD prediction model

Further refinement of gene features was achieved through sequential machine-learn-
ing analysis employing elastic net and bootstrap techniques (Fig.  1). The gene feature 
count for HRD score prediction was optimised, reducing from 4436 to 2538 via elastic 
net regression (Ela). Subsequently, a second-round elastic net regression (Re-Ela) fur-
ther streamlined this number to 2337. To achieve maximal gene feature optimisation, 
we embraced the bootstrap method, maintaining elastic net regression parameters. 
Through this iterative process involving random sampling and training set generation 
(n = 229) over 100 iterations, 356 genes consistently emerged in 98 out of 100 bootstrap 
instances (Fig. S1a). Notably, the PCC with scarHRD score improved from 0.533 to 0.767 
across optimisation stages, while gene features dwindled from 4436 to 356.

The final selection encompassed 356 gene features classified as positively correlated 
(n = 183) and negatively correlated (n = 173), out of which a significant majority—94.8% 
for positively correlated and 94.0% for negatively correlated—were identified as coding 
sequences (CDS) (Fig. S1b and S2). In addition, we used the EnrichR package to perform 
gene set enrichment analysis to investigate the association of HRD score with positively 
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Fig. 2 Evaluation of the HRD prediction model in the TCGA‑pan cancer. a Cross‑validation analysis of 
the machine‑learning model. The x‑axis denotes the number of elastic net cross‑validation iterations. 
The left‑y‑axis signifies the count of features (genes), while the right‑y axis indicates Pearson’s correlation 
coefficient (PCC) with the scarHRD score post‑machine learning. Black closed circles linked by solid lines and 
white circles connected by dotted lines correspond to the gene count and PCC, respectively, across each 
cross‑validation step. b Correlation pattern across TCGA‑pan cancer cohorts. Bar graph depicting the PCC 
between the predicted HRD score and scarHRD score in the TCGA‑pan cancer test set, encompassing various 
cancer types including KIRP (kidney renal clear papillary cell carcinoma), UCEC (uterine corpus endometrial 
carcinoma), BRCA (breast invasive carcinoma), KICH (kidney chromophobe), BLCA (bladder urothelial 
carcinoma), CESC (cervical squamous cell carcinoma and endocervical adenocarcinoma), OV (ovarian serous 
cystadenocarcinoma), STAD (stomach adenocarcinoma), SARC (sarcoma), UCS (uterine carcinosarcoma), LIHC 
(liver hepatocellular carcinoma), PRAD (prostate adenocarcinoma), LGG (brain lower grade glioma), TNBC 
(triplet negative breast cancer), HNSC (head and neck squamous cell carcinoma), MESO (mesothelioma), 
READ (rectum adenocarcinoma), SKCM (skin cutaneous melanoma), LUAD (lung adenocarcinoma), 
PAAD (pancreatic adenocarcinoma), ESCA (esophageal carcinoma), COAD (colon adenocarcinoma), KIRC 
(kidney renal clear cell carcinoma), ACC (adrenocortical carcinoma), LUSC (lung squamous cell carcinoma), 
THYM (thymoma), CHOL (cholangiocarcinoma), PCPG (pheochromocytoma and paraganglioma), GBM 
(glioblastoma multiforme), THCA (thyroid carcinoma), UVM (uveal melanoma), DLBC (lymphoid neoplasm 
diffuse large B‑cell lymphoma), and TGCT (testicular germ cell tumours). Significance levels denoted as *, **, 
and *** indicate P‑values < 0.05, < 0.001, and < 0.0001, respectively. The frequency of HRD (scarHRD score ≥ 42) 
in each tumour type is displayed. c Correlation between scarHRD and predicted HRD score (pHRD) in the 
TCGA‑pan cancer test set. Pearson’s correlation‑regression line was calculated, with the dark dotted line 
illustrating pan‑cancer correlation and the red line representing TCGA‑OV set correlation. The numeric 
number in each bar plot represents the frequency of HRD positive samples in cancer types. Frequency: the 
number of HRD positive sample / the number of sample with scarHRD score



Page 11 of 17Lee et al. BMC Bioinformatics          (2024) 25:236  

associated genes (Table  S3) and negatively associated genes (Table  S4) with specific 
pathways. The results revealed that genes such as ATR  and AURKA and pathways related 
to “Regulation of DNA repair” and “Cell cycle process” exhibited significant positive cor-
relation with HRD score. On the other hand, genes and pathways associated with “Cell 
cycle” or “DNA damage checkpoint”, including BRCA1, demonstrated a negative correla-
tion with HRD.

Development and validation of the expHRD algorithm

Calculation of expHRD was accomplished through single-sample gene set analysis 
(ssGSEA) using a gene set derived from the bootstrap process. This computation was 
executed using a newly devised equation to tailor the expHRD values per sample: The 
expHRD score is determined by subtracting the ssGSEA score of HR-negative genes 
from that of HR-positive genes. Notably, the PCC of expHRD against scarHRD score 
was 0.768 (P = 2.045e−12) in the TCGA-OV test set (Fig. 3a) and 0.633 (P = 6.655e−14) 
in the GDC ovarian cancer cohort (Fig. S3a). For evaluating the predictive performance 
of expHRD concerning scarHRD-high samples, receiver operating characteristics (ROC) 
curve analysis was conducted, revealing area under curve (AUC) values of 0.872 and 
0.806 in TCGA-OV (Fig. 3b) and the GDC ovarian cancer cohort (Fig. S3b), respectively. 

Fig. 3 Validation of expHRD performance in the TCGA‑OV test set. a Pearson’s correlation between expHRD 
and scarHRD in the TCGA‑OV test set (n = 58, PCC = 0.768, p = 2.045e−12). The blue line denotes the 
regression line, while the shaded area represents the 95% confidence interval (CI). b Receiver operating 
characteristic (ROC) curve plotting sensitivity against 1‑specificity values for expHRD score’s capacity to 
predict scarHRD‑high instances within TCGA‑OV test samples. c, d Kaplan–Meier overall survival analysis 
contrasting patients with high vs. low scarHRD (c) or expHRD (d) status within the TCGA‑OV test set. P‑values 
obtained via the log‑rank test
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To classify samples as having high or low expHRD, we utilized a regression analysis to 
align expHRD scores with those obtained from scarHRD, thereby standardizing our 
scoring against a recognized metric. Samples exhibiting an expHRD score of 1000 or 
higher were classified as having a high level of HRD.

Next, we analyzed the association between the mutation and promoter methylation 
of BRCA1/2 genes, and the distribution of expHRD calculated using our algorithm in 
the TCGA-OV and -TNBC test set (n = 58 and 12, respectively). The results revealed a 
statistically significant enrichment of BRCA1/2 mutations and methylation in samples 
with higher expHRD scores (expHRD ≥ 1000; P = 4.973e−04; Fig. S4). The accuracy and 
precision for predicting scarHRD were 0.71 and 0.58, respectively.

Also, we analyzed the association of Classifier of Homologous Recombination Defi-
ciency (CHORD) which predicts the status of HRD by utilizing specific single nucleotide 
variants (SNV), short insertions/deletions (indel) and structural variants (SV) types [9], 
scarHRD, and expHRD with 23 samples in the TCGA-OV cohort. CHORD exhibited 
significant associations not only with scarHRD (Spearman’s rho = 0.660; p = 6.16e−4) 
but also with expHRD (Spearman’s rho = 0.484; p = 1.63e−2; Fig.  S5). Furthermore, 
we analyzed the distribution patterns of expHRD and CHORD based on mutations 
and methylation within BRCA1/2 genes (Fig. S6). Both the Australian Ovarian Cancer 
Study (AOCS) and TCGA-OV/GDC-OV cohorts showed higher expHRD scores in sam-
ples with BRCA  mutations and methylation compared to the wild type, and CHORD 
exhibited a similar pattern in AOCS (Fig. S6a, c) and TCGA-OV/GDC-OV (Fig. S6b, d) 
dataset.

To compare the performance of expHRD with another HRD-associated gene set 
(n = 230) identified by Peng et al., we performed HRD scoring based on ssGSEA using 
the HRD-associated genes presented in the paper and tested its ability to distinguish 
scarHRD high and low [25]. The results showed that our expHRD algorithm yielded 
notably enhanced prediction potency, as reflected in elevated accuracy and AUC values 
in both TCGA-OV test set and GDC cohorts (Table 2).

Subsequent scrutiny of the clinical relevance of expHRD encompassed intra-
cohort (TCGA-OV test set, n = 58, Fig.  3c, d) and extra-cohort (GDC ovarian 
cancer, n = 112, Fig.  S5c, d) samples. Recent studies have reported that the HRD 
score is a clinically proven indicator for ovarian cancer prognosis [21, 30]. As 
anticipated, patients with scarHRD-high tumours exhibited significantly improved 

Table 2 Performance comparison with other HRD prediction tools on the TCGA‑OV and GDC data 
sets

Cohort Sensitivity Specificity Accuracy Precision F‑score AUC‑ROC AUC‑PR MCC

expHRD TCGA 0.7105 0.95 0.7931 0.9643 0.8182 0.7988 0.33 0.6283

Guang 
Peng 
et al.

0.4737 0.85 0.6034 0.8571 0.6102 0.6583 0.272 0.3201

expHRD GDC 0.9054 0.5526 0.7857 0.7976 0.8481 0.7738 0.6099 0.5008

Guang 
Peng 
et al.

0.5405 0.6579 0.5804 0.7547 0.6299 0.5892 0.4087 0.1882
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overall survival (TCGA-OV median survival: 1538  days ± confidence interval (CI) 
95% (range: 1187–4624), GDC median survival: 1511  days ± CI 95% (range: 1355–
2154)) relative to those with scarHRD-low tumours (TCGA-OV median survival: 
679  days ± CI 95% (range: 455–1448), GDC median survival: 871  days ± CI 95% 
(range: 681–1662)), as evidenced in both the TCGA-OV test set (p = 0.0004, Fig. 3c) 
and GDC ovarian cancer cohort (p = 0.00037, Fig. S7a). Moreover, patients with high 
expHRD tumours (TCGA-OV median survival: 2717  days ± CI 95% (range: 1249–
4624), GDC median survival: 1442 days ± CI 95% (range: 1264 ~ 1933)) experienced 
significantly superior overall survival compared to cases with low expHRD (TCGA-
OV median survival: 760  days ± CI 95% (range: 627–1448), GDC median survival: 
949  days ± CI 95% (range: 690–1946) in both the TCGA-OV test set (p = 0.00047, 
Fig. 3d) and GDC ovarian cancer cohort (p = 0.011, Fig. S7b).

We next validated whether the expHRD scoring system could reflect the functional 
restoration of HRD in recurrent samples with BRCA reversion mutations compared 
to primary tumors. To this end, we analyzed expHRD in five pairs of primary and 
recurrent samples with identified BRCA reversion mutations from the AOCS cohort 
[38]. The analysis revealed that two pairs of samples (AOCS_091 and AOCS_167) 
exhibited decreased expHRD scores in recurrent tumors, while this pattern was 
not observed in the remaining three pairs (Fig.  S8). These results suggest that the 
expHRD scoring system, designed primarily to predict scarHRD scores, may have 
limitations in detecting functional restoration, similar to the scarHRD system.

Web server development for expHRD calculation

To facilitate expHRD calculation, we developed a user-friendly web service enabling 
researchers to obtain predicted HRD scores akin to scarHRD by uploading their 
transcriptome data, even for a single tumour. The expHRD webserver (http:// www. 
genome- intel ligen ce- lab. org/ expHRD/) is powered by Apache and constructed using 
the Django framework. Data management is governed by sqlite3 (https:// www. sqlite. 
org/). On the client side, HTML5 (https:// html. com/ html5/) and JavaScript (https:// 
www. javas cript. com/) were employed to create interactive user interface compo-
nents. Ensuring a responsive user experience, the web server employs bootstrap 
(https:// getbo otstr ap. com/), jqWidgets (https:// www. jqwid gets. com), and plotly 
libraries (https:// plotly. com/ javas cript/). Noteworthy, expHRD prioritises user pri-
vacy, refraining from cookies or personal information collection. Moreover, it guar-
antees compatibility across major web browsers—Microsoft Edge, Google Chrome, 
Apple Safari, and Mozilla Firefox. The website is accessible without login requisites 
and is open to all users. The web server showcases calculated HRD scores (expHRD) 
upon clicking “Upload” to input DESeq2-based gene-expression profiles of single or 
multiple samples, followed by the “Run” button (Fig. 4a, b). Users are provided esti-
mated values, along with 95% confidential intervals, derived from expHRD, allowing 
distribution-based comparative analyses with TCGA-OV samples (Fig.  5a, b). The 
predicted HRD is a score recalculated from the ssGSEA-based expHRD score of the 
designated samples and parameters obtained from the linear regression model of 
scarHRD (Fig. 5).

http://www.genome-intelligence-lab.org/expHRD/
http://www.genome-intelligence-lab.org/expHRD/
https://www.sqlite.org/
https://www.sqlite.org/
https://html.com/html5/
https://www.javascript.com/
https://www.javascript.com/
https://getbootstrap.com/
https://www.jqwidgets.com
https://plotly.com/javascript/
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Conclusions
In this study, we successfully devised an algorithm, named expHRD, for predicting 
homologous recombination deficiency (HRD) using transcriptome data. Comple-
menting this, we have established a user-friendly web service, enabling researchers to 
obtain predicted HRD scores adjusted by expHRD for their own samples. The predic-
tion model was rigorously developed through the application of an elastic net regres-
sion within the TCGA-pan cancer training set. Employing the bootstrap technique, 
we curated the HRD gene set, integral to the expHRD calculation, through single-
sample gene set enrichment analysis (ssGSEA). Notably, we observed a robust PCC 
of 0.768 and 0.633 between expHRD and scarHRD in the TCGA-OV test set and 
GDC cohort, respectively. Furthermore, expHRD exhibited superior predictive per-
formance for identifying scarHRD-high samples, surpassing a previously established 
RNA-based HRD prediction methodology [39]. Impressively, expHRD exhibited clini-
cal significance by effectively discerning the overall survival differences among ovar-
ian cancer patients in both the TCGA-OV test and GDC cohorts.

The expHRD technique offers a tailored and clinically relevant RNA-seq-based 
approach for predicting HRD in tumour-only samples. Within clinical contexts, 
expHRD holds the potential to furnish valuable insights for anticipating responses to 
platinum or PARP inhibitor therapies through its provision of predicted HRD scores. 
Our web service for expHRD calculation represents an essential resource, enabling 
users to derive expHRD and predicted HRD scores in cases without matched ger-
mline data, including cryopreserved tissues, cell lines, or organoids, thereby ensur-
ing a cohort-independent application. Looking ahead, the development of a targeted 

Fig. 4 The web interface for expHRD calculation. The front page of the web interface for expHRD calculation 
demonstrates the query for uploading (a) and the input file overview (b) of the user’s gene‑expression data
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transcriptomic panel for expHRD computation holds promise as a cost-effective strat-
egy, facilitating seamless integration of our platform within clinical practice.
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