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Abstract 

Background: High-throughput behavioral analysis is important for drug dis-
covery, toxicological studies, and the modeling of neurological disorders such 
as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications 
because they are spawned in large clutches, develop rapidly, feature a relatively simple 
nervous system, and have orthologs to many human disease genes. However, exist-
ing software for video-based behavioral analysis can be incompatible with recordings 
that contain dynamic backgrounds or foreign objects, lack support for multiwell for-
mats, require expensive hardware, and/or demand considerable programming exper-
tise. Here, we introduce Marigold, a free and open source web app for high-throughput 
behavioral analysis of embryonic and larval zebrafish.

Results: Marigold features an intuitive graphical user interface, tracks up to 10 user-
defined keypoints, supports both single- and multiwell formats, and exports a range 
of kinematic parameters in addition to publication-quality data visualizations. By 
leveraging a highly efficient, custom-designed neural network architecture, Mari-
gold achieves reasonable training and inference speeds even on modestly powered 
computers lacking a discrete graphics processing unit. Notably, as a web app, Marigold 
does not require any installation and runs within popular web browsers on ChromeOS, 
Linux, macOS, and Windows. To demonstrate Marigold’s utility, we used two sets of bio-
logical experiments. First, we examined novel aspects of the touch-evoked escape 
response in techno trousers (tnt) mutant embryos, which contain a previously described 
loss-of-function mutation in the gene encoding Eaat2b, a glial glutamate transporter. 
We identified differences and interactions between touch location (head vs. tail) 
and genotype. Second, we investigated the effects of feeding on larval visuomotor 
behavior at 5 and 7 days post-fertilization (dpf ). We found differences in the number 
and vigor of swimming bouts between fed and unfed fish at both time points, as well 
as interactions between developmental stage and feeding regimen.

Conclusions: In both biological experiments presented here, the use of Marigold facil-
itated novel behavioral findings. Marigold’s ease of use, robust pose tracking, amenabil-
ity to diverse experimental paradigms, and flexibility regarding hardware requirements 
make it a powerful tool for analyzing zebrafish behavior, especially in low-resource 
settings such as course-based undergraduate research experiences. Marigold is avail-
able at: https:// downe slab. github. io/ marig old/.

Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Teicher et al. BMC Bioinformatics           (2025) 26:30  
https://doi.org/10.1186/s12859‑025‑06042‑2

BMC Bioinformatics

*Correspondence:   
gteicher@umass.edu; 
gbdownes@umass.edu

1 Biology Department, University 
of Massachusetts Amherst, 
Amherst, MA, USA
2 Molecular and Cellular Biology 
Graduate Program, University 
of Massachusetts Amherst, 
Amherst, MA, USA
3 Neuroscience and Behavior 
Graduate Program, University 
of Massachusetts Amherst, 
Amherst, MA, USA
4 Biology Department, Amherst 
College, Amherst, MA, USA
5 Neuroscience Program, 
Amherst College, Amherst, MA, 
USA

https://downeslab.github.io/marigold/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-025-06042-2&domain=pdf


Page 2 of 30Teicher et al. BMC Bioinformatics           (2025) 26:30 

Keywords: Zebrafish, Behavior, Pose tracking, Machine learning, Web app, Software, 
Open source

Introduction
The kinematic and ethological analysis of animal movements is an essential task for 
many researchers in neuroscience, psychology, and related fields. For investigators work-
ing with zebrafish (Danio rerio), behavioral assays are key methods for characterizing 
the toxicological effects of environmental pollutants, identifying therapeutic agents 
using small molecule screens, and modeling neurological disorders such as autism and 
epilepsy [6, 17, 51, 69]. Zebrafish embryos are spawned in large clutches and develop 
rapidly, making high-throughput screening in multiwell plates an attractive experimen-
tal paradigm. Additionally, zebrafish have a well characterized behavioral repertoire, a 
relatively simple nervous system containing fewer neurons compared to many other ver-
tebrates, and orthologs to numerous human disease genes [7, 36, 40, 44]. Thus, zebrafish 
are an excellent system for studying vertebrate behavior.

Despite the rising popularity of behavioral screening in zebrafish, currently available 
software for analysis has a variety of limitations. Behavioral analysis software has tradi-
tionally utilized classical image processing techniques such as pixel intensity threshold-
ing, background subtraction, skeletonization, and center of mass calculations to isolate 
animals from the visual background and track their movements [13, 14, 16, 43, 54, 59]. 
These techniques are often sufficient, but can lack robustness when challenged with 
dynamic backgrounds, varying lighting conditions, or earlier developmental stages when 
embryos present with less contrast against the background. Many solutions provide rela-
tively limited kinematic information by only tracking a single point representing a lar-
va’s overall position, while those programs capable of tracking multiple points often fail 
when foreign objects enter the field of view. Approaches based on classical image pro-
cessing techniques are particularly problematic for touch-evoked response assays that 
require a probe to enter the field of view, especially when the tactile stimulus is applied 
to the tail rather than the more easily detectable head. Additionally, many programs are 
closed source and/or tied to proprietary hardware such as specialized imaging cabinets, 
thus restricting access and customizability.

Several recently introduced programs have extended machine learning-based advances 
in human pose tracking to other species [27, 28, 30, 55, 62, 66, 67]. Such programs can 
achieve high accuracy, but they commonly require a high-end graphics processing unit 
(GPU) to run the large deep learning models efficiently. Additionally, many of these pro-
grams require workflows combining GUI-, command line-, and cloud-based elements, 
making such software difficult to use for those who lack programming, machine learn-
ing, or other technical expertise. These factors also limit the use of such programs in 
resource-constrained settings such as course-based undergraduate research experiences 
(CUREs), where such software might otherwise be useful. Lastly, due to the general-pur-
pose nature of existing deep learning-based pose tracking programs, they often lack sup-
port for popular zebrafish experimental paradigms, such as imaging in multiwell plates, 
which can limit their utility for zebrafish researchers.

Here, we present Marigold, a free and open source machine learning-based web app 
for automated pose tracking of embryonic and larval zebrafish that unites many of the 
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strengths of existing programs, while also addressing several common limitations. Mari-
gold reliably tracks up to 10 user-defined body keypoints, supports both single- and 
multiwell configurations, and features a user-friendly interface (Fig. 1). Marigold facili-
tates a streamlined workflow consisting of three stages: (1) generating a dataset by 
extracting a modest number of frames from representative behavioral recordings and 
labeling the frames with animal pose coordinates; (2) training a neural network using the 
generated dataset; and (3) analyzing new behavioral recordings using the trained neu-
ral network and exporting the resulting raw kinematic parameters and visualizations. 
Despite using convolutional neural networks, which are notoriously computationally 
demanding, Marigold is able to train models and analyze behavioral recordings at rea-
sonable speeds on current desktop or laptop computers without requiring a dedicated 
GPU. This speed is achieved by using a highly efficient, custom neural network archi-
tecture incorporating a series of macro-architectural and micro-architectural optimiza-
tions. For each animal analyzed, Marigold generates publication-ready trajectory plots 
and a CSV file of keypoint coordinates, speeds, and angles between keypoints, which 
facilitates downstream analysis pipelines. Notably, as a web app, Marigold does not 
require any installation and is highly cross-platform, running within popular web brows-
ers on ChromeOS, Linux, macOS, and Windows across a wide range of devices.

To showcase its robustness and versatility, we used Marigold to obtain biological 
insights from two sets of zebrafish experiments. First, we examined novel aspects of the 
embryonic touch-evoked response phenotype in the previously described techno trou-
sers (tnt) mutant [29, 57], which contains a loss-of-function mutation in the gene encod-
ing Eaat2b, a glial glutamate transporter. By applying the stimulus to either the head 
or the tail, we identify differences and interactions between genotype and touch loca-
tion, potentially providing new clues into how neural circuits may be disrupted in this 
mutant. Second, we investigated the effects of developmental stage and feeding on larval 

Fig. 1 Marigold features an intuitive, web-based graphical user interface (GUI). Marigold’s welcome page 
(as viewed in Google Chrome on macOS) orienting the user to the workflow of labeling a dataset, training a 
model, and analyzing behavior
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visuomotor response behavior. We identify differences and interactions between devel-
opmental stage and feeding regimen, highlighting the importance of considering both 
factors when designing and reporting the results of larval visuomotor response assays. 
In both biological experiments, the use of Marigold led to novel behavioral findings, 
demonstrating some of the types of biological questions that can be addressed using the 
detailed kinematic analysis provided by Marigold.

Methods
Zebrafish husbandry

All animals used in this study were obtained from our lab’s fish facility at University of 
Massachusetts Amherst. Adult zebrafish were bred to obtain embryos and larvae for 
experimentation. Embryos and larvae younger than 5 dpf were maintained in the dark 
at 28.5 °C. Older fish were maintained on a 14 h light, 10 h dark cycle at approximately 
28.5 °C. All wild type fish were from either Tübingen or Tüpfel long-fin (TL) strains as 
indicated. techno trousers (slc1a2btk57) fish [29, 57] were maintained on a TL background. 
All animal procedures were approved by the University of Massachusetts Amherst Insti-
tutional Animal Care and Use Committee (IACUC) under Animal Welfare Assurance 
number A3551-01. No animal procedures were performed at Amherst College.

Dataset collection and labeling

Two novel datasets were developed: one for touch-evoked responses and one for visu-
omotor responses. For both datasets, embryos were obtained from mass matings of 
Tübingen or TL fish. Behavior was monitored using an IDT X-Stream 1440p PCIe 2.0 
high speed camera (Integrated Design Tools, Inc., Pasadena, CA, USA). Larvae were 
imaged from above and illuminated using a white light or near-infrared source from 
below. Recordings were made under varying conditions of lighting intensity, resolution, 
magnification, and focus.

From the generated movies, frames were manually selected for inclusion in the data-
sets with the goal of maximizing the representation of diverse poses and experimental 
conditions. Each frame was then manually labeled and the labeled coordinates were used 
to generate target heatmaps (i.e., two-dimensional Gaussians) that served as the “ground 
truth” for our neural networks during training.

For the touch-evoked response dataset, movies were recorded of embryos and lar-
vae between the developmental stages of 2–4 dpf in wells in the inverted lids of 24-well 
plates. Labels targeted 7 keypoints evenly spaced across the rostral caudal axis. For the 
visuomotor response dataset, movies were recorded of larvae between the develop-
mental stages of 5–7 dpf in 24-well plates. Labels targeted a single keypoint positioned 
between the two eyes.

Software development

Marigold was written in HTML, CSS, JavaScript, and C++ (with the latter used to gen-
erate WebAssembly) and is licensed under the GNU General Public License version 3 
(GPLv3). No external libraries or components were used or incorporated other than the 
Adobe Source Sans 3 font (used under the SIL Open Font License Version 1.1) (Adobe, 
n.d.), the plasma and viridis colormaps (used under the CC0 “No Rights Reserved” 
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license) (Smith et al., n.d.), and the SplitMix64 [80] and xoshiro256** [8] pseudorandom 
number generators (both used under the CCO “No Rights Reserved” license) (Black-
man & Vigna, n.d.). Building for deployment was automated using GitHub Actions, with 
hosting provided by GitHub Pages.

Measurement and calculation of performance metrics

Performance measurements were obtained using a Lenovo Thinkpad P14s Gen 4 laptop 
equipped with an AMD Ryzen 7 PRO 7840U central processing unit (CPU) and running 
Fedora Workstation 41 with Linux kernel version 6.11.7. PyTorch-based performance 
measurements were obtained using Python 3.13.0, NumPy 2.1.3 [34], pandas 2.2.3 [58], 
SciPy 1.14.1 [92], PyTorch 2.5.1 [2], and torchvision 0.20.1 [87]. WebAssembly-based 
performance measurements were obtained using the LLVM (version 19.1.0) Clang com-
piler and wasm-ld linker, with the generated WebAssembly running in Google Chrome 
131. All performance measurements reflect single-threaded CPU performance.

Training speeds reflect the time required to complete a forward and backward pass 
through the neural network in training mode at the specified batch size. Inference speeds 
reflect the time required to complete a forward pass through the neural network in eval-
uation mode at the specified batch size. Notably, these measurements do not include the 
time required to perform data augmentation or gather data into batches.

Theoretical minimum memory footprints correspond to a hypothetical implementa-
tion in which all required memory buffers must be allocated before training begins and 
cannot be freed or repurposed until training has ended, individual computations are 
executed with the minimum possible number and size of memory buffers (e.g., by using 
implicit rather than explicit padding for depthwise convolutions), and gradient accumu-
lation is used to the fullest extent possible wherever it can be used without impacting the 
results (i.e., in the absence of Batch Normalization).

Neural network design and training

Neural networks were trained at an input resolution of 512 × 512 (touch-evoked 
response dataset) or 256 × 256 (visuomotor response dataset). All MobileNetV3 
blocks and variations used an expansion ratio of 2, with the number of channels 
as input to the block set to 32 (touch-evoked response dataset) or 16 (visuomotor 
response dataset) when operating at the smallest spatial resolution, except where 
otherwise noted. For the hierarchical macro-architecture, intro blocks consisted of 
a 4 × 4 convolution with 2 × 2 stride followed by a normalization layer. Outro blocks 
consisted of a 1 × 1 convolution layer with a channel expansion ratio of 2, a hard swish 
layer, a spatial dropout layer with drop probability = 0.05, and a 1 × 1 convolution 
layer reducing the channels to the number of keypoints. Downsampling and upsam-
pling blocks consisted of a 2 × 2 convolution with 2 × 2 stride or a 2 × 2 transposed 
convolution with 2 × 2 stride stride, respectively, followed by a normalization layer. 
For the isotropic macro-architecture, intro blocks consisted of a 8 × 8 pixel unshuf-
fle layer, a 1 × 1 convolution layer, and a normalization layer, except where otherwise 
noted. Outro blocks consisted of a 1 × 1 convolution layer with a channel expansion 
ratio of 2, a hard swish layer, a spatial dropout layer with drop probability = 0.05, a 
1 × 1 convolution layer reducing the channels to 16 × the number of keypoints, and a 
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4 × 4 pixel shuffle layer transforming the number of channels to the number of key-
points while increasing the spatial resolution, except where otherwise noted.

Training was performed using mean squared error (MSE) loss, a batch size of 
16, and the AdamW optimizer [49] with learning rate = 5.0 ×  10−4 (touch-evoked 
response dataset) or 1.0 ×  10−4 (visuomotor response dataset), β1 = 0.9, β2 = 0.95, 
and ε = 1.0 ×  10−6. Weight decay = 1.0 ×  10−5 was applied to the weights of all convo-
lution layers. Convolution weights were initialized using Xavier initialization [26], 
with the exception of the final convolution layer which was initialized to zeros. When 
a convolution layer was followed by a nonlinearity or by a normalization and then 
nonlinearity, the initialization gain was set to the square root of two, with the gain 
otherwise set to one. Additionally, the initialization gain for the last convolution layer 
in each residual block was scaled by the reciprocal of the square root of the number of 
residual blocks, as suggested by [53]. All convolution biases were initialized to zeros. 
For all normalization layers, ε was set to 1.0 ×  10−3, which matches the value used for 
Batch Normalization in MobileNetV3 [38] and was found to have a stabilizing effect 
on training compared to the PyTorch default value of 1.0 ×  10−5. The PyTorch default 
value of momentum = 0.9 was used for Batch Normalization layers.

Data augmentation

Datasets were randomly divided into training (75%) and validation (25%) splits. On-
the-fly data augmentation [75] was applied to images in the training split by randomly 
adjusting gamma and brightness, randomly resizing, randomly flipping vertically and 
horizontally, randomly rotating, randomly padding and cropping, and (after stand-
ardization) randomly adding a small amount of Gaussian noise. Additionally, a small 
amount of “wiggle” was randomly applied to keypoint coordinates during generation 
of the two-dimensional gaussian labels. Data augmentation was not applied to images 
or labels in the validation split. All images were standardized using the mean and 
standard deviation calculated over the training split.

Touch‑evoked response assay

Embryos were obtained from mass matings of heterozygous techno trousers (slc1a2b+/

tk57) fish. Behavior was monitored using an IDT X-Stream 1440p PCIe 2.0 high speed 
camera (Integrated Design Tools, Inc., Pasadena, CA, USA) in a temperature con-
trolled setting (25 °C). Larvae were transferred in E3 solution to a well in the inverted 
lid of a CytoOne 24-Well Tissue Culture Plate (USA Scientific, Inc., Ocala, FL, USA) 
and allowed to acclimate briefly before touching on either the side of the head or tip 
of the tail as indicated with a 3.22/0.16 g of force von Frey filament held by a surgi-
cal blade holder. Larvae were imaged from above and illuminated using a white light 
source from below. Responses were recorded at a resolution of 1024 × 1024 pixels 
with a framerate of 1000 Hz and exposure time of 0.8 ms. Recordings were manually 
trimmed to remove extraneous frames before and after the response, as determined 
by the first and last visible movements initiated by the fish, respectively.
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slc1a2b genotyping

Following behavioral analysis, fish were euthanized using an overdose of MS-222 
(pH = 7.0) (Sigma-Aldrich, St. Louis, MO, USA). DNA was extracted from the euth-
anized larvae using Extract-N-Amp Tissue PCR Kit (Sigma-Aldrich, St. Louis, MO, 
USA) according to the manufacturer’s protocol. A 192 bp region of exon 2 of slc1a2b 
flanking the site encoding the A393V mutation was amplified by PCR using the for-
ward primer 5’-TGC TGG AAC TCT GCC CGT GA-3’ and the reverse primer 5’-ACG 
GTG ACG ATC TGT CCA GG-3’. PCR was performed using AmpliTaq Gold DNA Poly-
merase (Applied Biosystems/Thermo Fisher Scientific, Waltham, MA, USA) accord-
ing to the manufacturer’s protocol and using an annealing temperature of 59 °C. The 
PCR product was digested overnight using Fnu4HI (New England Biolabs, Ipswich, 
MA, USA) according to the manufacturer’s protocol. Digestion yielded a single frag-
ment of 192  bp for homozygous mutant fish (slc1a2btk57/tk57), two fragments of 133 
and 59  bp for homozygous wild type fish (slc1a2b+/+), and three fragments of 192, 
133, and 59 bp for heterozygous fish (slc1a2b+/tk57). The digested PCR products were 
resolved for genotypic determination by agarose gel electrophoresis.

Visuomotor response assay

Embryos were obtained from mass matings of Tübingen strain zebrafish and maintained 
in E3 media for the duration of experiments. Larvae were kept in petri dishes until 5 dpf, 
at which point they were transferred to 2.5 L fish tanks at a density of approximately 
45 fish/tank and maintained on a 14 h light, 10 h dark light cycle. The initial volume of 
E3 media in the tanks was 250 mL, with an additional 250 mL added daily. Fish in fed 
conditions were given approximately 50 mg of Gemma Micro 75 (Skretting, Stavanger, 
Norway) once daily beginning at 5 dpf and continuing through 7 dpf. Feeding occurred 
at approximately 12:00 PM each day, with behavioral recordings occurring between 4 
and 6 h after feeding. Behavior was monitored using an IDT X-Stream 1440p PCIe 2.0 
high speed camera (Integrated Design Tools, Inc., Pasadena, CA, USA) in a temperature 
controlled setting (25  °C). Larvae were transferred to the wells of a CytoOne 24-Well 
Tissue Culture Plate (USA Scientific, Inc., Ocala, FL, USA) for recording. Larvae were 
imaged from above and illuminated from below using a custom-built light source which 
was toggled between white and near-infrared illumination modes. Fish were shielded 
from ambient light by an enclosing cabinet. Responses were recorded at a resolution of 
1440 × 1440 pixels with a framerate of 100 Hz and exposure time of 0.8 ms.

Statistical analysis and data visualization

Statistical significance was determined by two-way analysis of variance (ANOVA) 
with Tukey post hoc test using the R language (version 4.4.2) [64]. Data visualizations 
were generated using the ggplot2 library (version 3.5.1) for R [95].

Results
Neural network design

Arguably, modern machine learning is dominated by the massively parallel train-
ing of extremely overparameterized deep neural networks on colossal datasets using 
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high-end GPU clusters [31, 85]. This paradigm is at odds with common use case sce-
narios in resource-constrained settings such as course-based undergraduate research 
experiences (CUREs) and academic life science research labs, in which hardware 
often lags behind the cutting edge and domain-specific datasets frequently must be 
collected and labeled de novo.

To reduce the processing and memory demands of deep convolutional neural 
networks sufficiently to make in-browser, on-device zebrafish pose tracking feasi-
ble with minimal hardware requirements and limited data availability, we collected 
and labeled two proof-of-principle datasets and used them to develop and evalu-
ate a series of neural network architectural variants. Our datasets were designed to 
reflect behavioral assays commonly used within our lab and were composed of either 
labeled frames from touch-evoked response movies, in which case labels consisted 
of 7 keypoints evenly spaced across the rostral–caudal axis, or labeled frames from 
visuomotor response movies, in which case labels consisted of a single keypoint 
located between the two eyes (Fig.  2). Our neural networks were prototyped using 
PyTorch  [2], a highly optimized machine learning library for Python, and evaluated 
based on training dynamics, training speed, inference speed, parameter count, and 
theoretical minimum memory footprint. We chose to evaluate training and infer-
ence speeds primarily based on single-threaded CPU performance as this represents 
a “lowest common denominator” target across the wide variety of platforms, devices, 
and research settings we aimed to support.

As an efficient and well-established baseline building block for our neural net-
work architectural design experiments, we adopted the MobileNetV3 inverted bot-
tleneck residual block [38]. As the most recent member of the MobileNet family of 
blocks designed for fast CPU inference on mobile devices [38, 72, 39], the Mobile-
NetV3 design improved on that of MobileNetV2 by optionally incorporating larger 

Fig. 2 Examples of input–output pairs from the touch-evoked response and visuomotor response datasets. 
Representative images from each dataset visualized with and without overlaid pseudocolored gaussians 
corresponding to labeled keypoints
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depthwise convolution kernel sizes, the Hard Swish activation function, and the 
Squeeze and Excitation module.

Having selected the MobileNetV3 inverted bottleneck residual block as our baseline 
building block, we proceeded to incorporate it into two potential macro-architectural 
designs (Fig. 3A). In the first approach, we adopted a hierarchical architecture inspired 
by neural networks such as the Hourglass and Simple Baseline architectures for human 
pose estimation and the U-Net architecture for semantic segmentation of medical 
images [61, 68, 98]. In this architecture, as information flows through the successive lay-
ers of the neural network, it is first downsampled, then upsampled. The downsampling 

Fig. 3 Overview of macro-architectural and micro-architectural design decisions leading to a simple, 
efficient, and easily customizable neural network architecture. (A) Schematic of the macro-architectural 
design process illustrating the implementations of hierarchical and isotropic neural networks. Red 
indicates input images, yellow indicates intro blocks, green indicates downsampling blocks, blue indicates 
upsampling blocks, purple indicates outro blocks, and gray indicates residual blocks. H: input height; W: input 
width; I: input channels; M: middle channels; O: output channels; N: residual blocks. (B) Schematic of the 
micro-architectural design process illustrating the implementations of the MobileNetV3 inverted bottleneck 
residual block and subsequent modifications. Small arrows indicate the flow of information through the 
macro- and micro-architectures, while large arrows indicate the flow of the design process
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path minimizes the computational cost of the expensive convolutional layers and aggre-
gates spatial context, while the upsampling path restores the resulting representation to 
the larger spatial resolution required to produce accurate probability heatmaps for each 
body keypoint of interest. In the second approach, we adopted an isotropic architec-
ture [71]. In contrast to hierarchical architectures which make use of multiple internal 
resolutions, isotropic architectures utilize a constant internal resolution, essentially per-
forming all processing on non-overlapping image “patches”. Isotropic architectures also 
remain relatively unexplored, particularly for computer vision tasks other than image 
classification. Interestingly, an isotropic architecture was recently used for keypoint-
based fish morphometric analysis [70], suggesting its potential utility for animal pose 
estimation. We tailor our architectures to our two datasets as described in Table 1. 

Despite its simplicity, the isotropic architecture exhibited compelling advantages over 
its hierarchical counterpart (Fig.  4). Across both datasets, the isotropic architecture 
reached lower loss values in less time (Fig. 4A–B) and achieved severalfold faster train-
ing and inference throughput (Fig. 4C–D). Although the isotropic architecture contains 
a greater number of trainable parameters, its theoretical minimum memory footprint is 
considerably smaller (Fig. 4E–F). To help tease apart any intrinsic benefit of patch-based 
processing from that of operating at a specific internal resolution, we also explored using 
patches larger and smaller than the 8 × 8 patches corresponding to the smallest internal 
resolution of our hierarchical architecture, adjusting the number of channels in inverse 
proportion to the number of spatial pixels to control for the overall processing and mem-
ory demands. Smaller patch sizes led to considerably slower training convergence while 
larger patch sizes led to similar training convergence but with lower inference speed; 
thus, 8 × 8 patches appeared to provide the most optimal balance across our metrics of 
interest (Supplementary Fig. 1). Altogether, moving from a hierarchical architecture to 
an isotropic architecture appears to be a net positive design decision.

With our macro-architectural design strategy in place, we turned our attention to 
micro-architectural improvements to the MobileNetV3 block (Figs.  3B and 5). As our 
first micro-architectural design step, we explored alternatives to the Batch Normaliza-
tion layers used in the MobileNetV3 block. Batch Normalization is widely adopted in 
neural network architectures for computer vision due to its ability to improve training 
dynamics and help prevent overfitting [41]. During training, the computational over-
head introduced by Batch Normalization leads to slower per-epoch training through-
put, but this is generally outweighed by the resulting improvement in per-epoch training 
convergence. At inference time, the computational overhead can be avoided by “folding” 

Table 1 Neural network configurations. Designations in parentheses correspond to those in Fig. 3A

Dataset Touch‑evoked Visuomotor

Input resolution (H × W) 512 × 512 256 × 256

Output resolution (H/2 × W/2) 256 × 256 128 × 128

Input channels (I) 1 1

Middle channels (M) 32 16

Output channels (O) 7 1

Residual blocks (N) 10 10
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Batch Normalization layers into adjacent convolutional layers. Thus, Batch Normaliza-
tion generally leads to more efficient training without negatively impacting inference 
speed. However, the dependence of Batch Normalization on the batch size used dur-
ing training leads on the one hand to markedly poorer training convergence at smaller 
batch sizes and, on the other hand, to a larger training memory footprint at large batch 

Fig. 4 Isotropic neural network macro-architectures outperform more traditional hierarchical neural network 
macro-architectures by multiple metrics. Neural networks were trained for 6000 parameter updates for each 
dataset and macro-architecture. A Loss curves for the touch-evoked response dataset. B Loss curves for 
the visuomotor response dataset. C Training speeds. D Inference speeds. E Parameter counts. F Theoretical 
minimum memory footprints. Data represent the mean or the mean plus and minus the standard error of the 
mean of 10 independent experiments in which datasets were partitioned and neural network weights were 
initialized using different random seeds
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sizes, with the potential to exceed the limited amount of memory that web apps are per-
mitted to allocate. By contrast, proposed alternatives to Batch Normalization, such as 
Layer Normalization [5], Group Normalization [97], and Instance Normalization [89], 
operate independently of batch size, enabling the use of gradient accumulation to main-
tain a constant training memory footprint independent of batch size. However, these 

Fig. 5 Micro-architectural improvements to the MobileNetV3 block improve training dynamics and reduce 
memory requirements at minimal cost to inference speed. Neural networks were trained for 6000 parameter 
updates for each dataset and micro-architecture. A Loss curves for the touch-evoked response dataset. B Loss 
curves for the visuomotor response dataset. C Training speeds. D Inference speeds. E Parameter counts. F 
Theoretical minimum memory footprints. Data represent the mean or the mean plus and minus the standard 
error of the mean of 10 independent experiments in which datasets were partitioned and neural network 
weights were initialized using different random seeds
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alternatives cannot be “folded” into preceding convolutional layers, introducing com-
putational overhead at inference time. In our experiments, Layer Normalization, Group 
Normalization, and Instance Normalization all led to competitive training convergence 
compared to Batch Normalization at a modest cost to inference speed (Supplemen-
tary Fig. 2). However, “swapping” from Batch Normalization to Instance Normalization 
resulted in the greatest improvement in training dynamics across both datasets and thus 
was incorporated into our final architectural design (Figs. 3B and 5).

Next, we asked whether it was possible to recover some of the inference speed that 
was lost as a result of the switch from Batch Normalization to Instance Normalization 
without negatively impacting the training dynamics (Figs.  3B  and 5). A logical way to 
accomplish this would be to “drop” some of the components of the MobileNetV3 block. 
We thus performed a series of ablation studies to determine which components were 
most dispensable. We were surprised to find that “dropping” two of the three Instance 
Normalization layers and one of the two Hard Swish layers actually led to more favora-
ble training dynamics than any other design iteration, while also recovering much of the 
inference speed (Figs. 3B and 5). We note that the choices of which Instance Normaliza-
tion layer and Hard Swish layer to keep were crucial in this design step, as other combi-
nations did not perform as well (Supplementary Fig. 3).

Altogether, our series of macro-architectural and micro-architectural design steps 
resulted in markedly faster training and inference speeds, with substantially reduced 
theoretical memory footprints, compared to our already reasonably efficient baseline. 
Given that similar results were obtained across both datasets, our final architecture 
appears to be flexible enough to accommodate a range of experimental paradigms. All 
the more so considering that the isotropic nature of our architecture largely decouples 
design parameters such as input resolution, middle resolution, output resolution, num-
ber of middle channels, number of residual blocks, and residual block channel expansion 
ratio, thus supporting a large degree of potential customization.

Training data requirements

Given that manually labeling data is often the most labor-intensive step in a super-
vised machine learning workflow, we next asked to what extent similar results could be 
obtained with less training data available. We investigated this by incrementally ablat-
ing images from the training split of each of our two datasets while controlling for the 
total number of parameter updates (Fig. 6). To fairly evaluate each model’s ability to gen-
eralize to previously unseen data, we held the number of images in the validation split 
constant.

Across both datasets, ablating increasing amounts of training data led to steadily 
decreasing training efficacy, with a disparity between the validation and training par-
titions in later stages of training indicating greater degrees of overfitting (Fig. 6A–B). 
To determine to what extent this affects the accuracy of predictions, we quantified 
the accuracy of predictions when varying amounts of training data are available 
(Fig.  6C–D). Because our datasets include a number of images with extreme varia-
tions in lighting conditions, occlusions, and other artifacts beyond what would nor-
mally be observed in data collected for routine biological experiments within our 
lab, the keypoints in some of these extreme images are not predicted well even by 
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neural networks trained with all available training data. To account for this effect, we 
report relative accuracy as the ratio of correctly predicted keypoints for ablated data-
sets relative to the number of correctly predicted keypoints when all training data is 
available. We consider predictions to be correct when they are within 3 pixels from 
the ground truth label for the touch-evoked response dataset or within 1.5 pixels 
from the ground truth label for the visuomotor response dataset.

As data is ablated, there appears to be a steady increase in the final loss values 
(Fig.  6A–B) and a corresponding dropoff in the number of correctly predicted key-
points (Fig. 6C–D), but under the tested conditions we did not observe a catastrophic 
failure to converge even in the face of extremely scarce training data. We conclude 
that our neural networks can be trained effectively even with limited training data, 

Fig. 6 Marigold’s neural networks can be trained effectively even with limited training data. Neural networks 
were trained for 6000 parameter updates on increasingly ablated sets of training images while evaluating 
performance on a constant number of validation images. A Loss curves for the touch-evoked response 
dataset. B Loss curves for the visuomotor response dataset. C Relative accuracies for the touch-evoked 
response dataset. D Relative accuracies for the visuomotor response dataset. Data represent the mean or the 
mean plus and minus the standard error of the mean of 10 independent experiments in which datasets were 
partitioned and neural network weights were initialized using different random seeds
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particularly given that our datasets contain several orders of magnitude fewer images 
than many conventional computer vision datasets. However, it is likely that refine-
ments to our data augmentation pipeline and/or adjustments to the strength of reg-
ularization techniques such as weight decay and dropout could lead to improved 
performance when data is more limited. Additionally, whereas we included extreme 
examples in our datasets to make them more challenging, better results could likely 
be obtained with fewer images by restricting the dataset to images from more repre-
sentative behavioral recordings.

WebAssembly implementation

Having optimized our neural network architecture using our PyTorch-based implemen-
tation and verified that it can be effectively trained with relatively little training data, we 
next focused on implementing this functionality within our web app. To achieve this, 
we implemented the necessary neural network layer and training operations in C++ and 
used this to generate WebAssembly, which allows such code to run within a browser at 
speeds approaching those of native C++ code [33, 63]. We also explored existing neu-
ral network libraries available to web apps, but found that such libraries are generally 
limited in functionality compared to those available in Python and other environments. 
TensorFlow.js [77], for example, was missing implementations for several of the required 
layers for our chosen architecture. It also did not support gradient accumulation, which 
would have forced the use of smaller, less effective batch sizes to minimize our web app’s 
memory footprint. We also observed that many neural network implementations for the 

Fig. 7 Marigold’s WebAssembly-based neural network implementation achieves CPU performance 
competitive with that of PyTorch. A Training speeds for the touch-evoked response dataset. B Training speeds 
for the visuomotor response dataset. C Inference speeds for the touch-evoked response dataset. D Inference 
speeds for the visuomotor response dataset. Measurements reflect single-threaded CPU performance. 
Training speeds were measured using gradient accumulation with a batch size of 1 to obtain an effective 
batch size of 16. Inference speeds were measured with a batch size of 1. Data represent the mean of 10 
independent measurements
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web, such as the emerging WebNN standard [94], are primarily focused on inference and 
lack support for training.

To evaluate the effectiveness of our WebAssembly-based approach, we compared the 
resulting training and inference speeds to those of our PyTorch implementation (Fig. 7). 
In terms of training speed, Marigold slightly to moderately outperformed PyTorch 
across neural networks configured for both the touch-evoked response and visuomo-
tor response datasets (Fig. 7A–B). In terms of inference speed, Marigold slightly outper-
formed PyTorch for neural networks configured for the visuomotor response dataset, 
but was moderately outperformed by PyTorch for neural networks configured for the 
touch-evoked response dataset (Fig.  7C–D). Overall, our implementation achieves 
speeds that are competitive on CPU with the highly optimized PyTorch library. This is 
particularly noteworthy given the relatively limited access to memory and CPU features 
that web apps are permitted.

Effects of genotype and touch location in slc1a2btk57/tk57 and wild‑type sibling 

touch‑evoked responses

Using Marigold, we investigated novel aspects of the techno trousers (tnt) locomo-
tor phenotype [29, 57]. This mutant, henceforth referred to as slc1a2btk57/tk57, harbors 
a loss-of-function missense mutation in slc1a2b (Ensembl ID: ENSDARG00000102453) 
located on chromosome 25, which encodes Eaat2b, a glutamate transporter predomi-
nantly expressed in astroglia [37, 57]. We note that this gene and its protein product 
have also been referred to as slc1a2a and Eaat2a, respectively [25, 37]; however, cur-
rent genome databases indicate that these particular identifiers refer to a distinct gene 
found on chromosome 7 (Ensembl ID: ENSDARG00000052138) and its protein prod-
uct [10]. slc1a2btk57/tk57 embryos demonstrate a hyperactive response to touch by 48 hpf, 
but the larvae are effectively paralyzed and shorter along the rostral–caudal axis by 96 
hpf [57]. Small twitch responses to touch can be observed at 96 hpf, suggesting the lack 
of response is due to motor issues rather than sensory issues. Because the auditory and 
visual systems are not fully developed by 96 hpf, tactile stimulation at earlier time points 
is the most robust way to elicit the hyperactive phenotype.

Reticulospinal neurons, such as the Mauthner cell and its homologs (collectively 
referred to as the Mauthner array), are the primary mediators of the short latency touch-
evoked response. Head-stimulated responses recruit the full Mauthner array while tail-
stimulated responses recruit the Mauthner cell alone, resulting in kinematically distinct 
responses based upon touch location [46]. By comparing touch-evoked responses of 
head- and tail-stimulated slc1a2btk57/tk57 embryos, we reasoned that we could uncover 
novel aspects of the slc1a2btk57/tk57 locomotor phenotype.

Following head stimulation, wild-type embryos reliably exhibit a high amplitude body 
bend, reorienting the embryo, followed by lower amplitude undulations, allowing the 
embryo to swim away from the perceived threat (Fig. 8A). Head-stimulated slc1a2btk57/

tk57 embryos swim significantly longer and farther than wild-type controls (two-way 
ANOVA, F(1,86) = 59.58, p < 0.001 and F(1,86) = 57.81, p < 0.001 for duration and dis-
tance, respectively) (Fig. 8B–C). Consistent with previous literature [57], slc1a2btk57/tk57 
embryos perform more high amplitude body bends during the escape response (two-way 
ANOVA, F(1,86) = 35.88, p < 0.001) (Fig.  8D). However, the number of high amplitude 
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body bends performed across head- and tail-stimulated embryos did not vary by gen-
otype (two-way ANOVA, F(1,86) = 0.00, p > = 0.05). The distribution of high amplitude 
body bends throughout the startle response differs markedly between slc1a2btk57/tk57 
and wild-type embryos. slc1a2btk57/tk57 embryos perform extended stretches of high 
amplitude body bends throughout the responses (Figs. 8E and 9A). Of all embryos that 

Fig. 8 slc1a2btk57/tk57 mutant zebrafish exhibit hyperactive touch-evoked startle behavior regardless of 
the touch location. A Schematic illustrating calculation of rostral–caudal angle and quantification of high 
amplitude body bends. B Representative trajectory traces. C Quantification of response durations. D 
Quantification of high amplitude body bends. E Visualization of individual rostral–caudal angles over time, 
with three fish omitted at random in order to show equal numbers of fish across conditions. Statistical 
significance determined by two-way ANOVA with Tukey post hoc; n.s.: not significant; ***: p < 0.001; n = 21–24 
fish per condition across 3 independent experiments
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perform a high amplitude body bend, the distribution of slc1a2btk57/tk57 high amplitude 
body  bends features more high amplitude body  bends occurring later in the response 
(Fig. 9A–B). 

We further investigated characteristics of the first body bend within each startle 
response. Regardless of genotype, the initial bend of tail-stimulated embryos is signifi-
cantly lower in amplitude than that of head-stimulated embryos, often not crossing the 
110 ° threshold (two-way ANOVA, F(1,86) = 79.703, p < 0.001) (Fig. 9C). Tail-stimulated 

Fig. 9 slc1a2btk57/tk57 and wild-type embryos perform rostral–caudal body bends dependent on interactions 
between genotype and touch location. A Visualization of absolute rostral–caudal angle magnitudes at the 
peaks of high amplitude body bends, depicted over time according to overall response progress. Three fish 
were omitted at random in order to represent equal numbers of fish across conditions. Red line indicates the 
threshold of 110 ° for classification as a high amplitude body bend. B Percentage of responses which contain 
one or more high amplitude body bends. C Quantification of peak angle of first body bend. D Quantification 
of time to peak angle of first body bend. E Quantification of maximum angle across the entire response. F 
Quantification of time to maximum angle across the entire response. Statistical significance determined by 
two-way ANOVA with Tukey post hoc; n.s.: not significant; ***: p < 0.001; n = 21–24 fish per condition across 3 
independent experiments
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embryos also reached their maximum angle significantly earlier in the response (two-
way ANOVA, F(1,86) = 44.833, p < 0.001) (Fig. 9D). Interestingly, we note genotype- and 
touch location-dependent effects on the maximum body angle of the startle response. 
Among wild-type embryos, the maximum body bend had a significantly lower ampli-
tude in tail-stimulated embryos than in head-stimulated embryos (two-way ANOVA, 
F(1,86) = 36.78, p < 0.001). In contrast, the maximum angle for tail-stimulated slc1a2btk57/

tk57 responses is nearly indistinguishable from head-stimulated slc1a2btk57/tk57 responses 
(two-way ANOVA interaction, F(1,86) = 14.45, p < 0.001) (Fig. 9E). To determine whether 
embryos execute the maximum angle after the initial bend, we measured the time 
required for the embryo to reach the maximum body angle of the response. slc1a2btk57/

tk57 embryos perform their maximum body bend significantly later in the response than 
wild-type embryos (two-way ANOVA, F(1,86) = 25.26, p < 0.001) (Fig. 9F).

Effects of developmental stage and feeding on larval visuomotor response behavior

To demonstrate additional capabilities of Marigold, particularly its ability to accurately 
and efficiently analyze the behavior of larval zebrafish in multiwell plates, we examined 
the effects of developmental stage and feeding on the larval visuomotor response [12–
14, 45, 65]. Larvae were fed or not fed once daily from 5 dpf through 7 dpf and behav-
ior was recorded in 24-well plates 4–6 h after feeding at 5 dpf and 7 dpf. To examine 
the effects of age and feeding across multiple behavioral modes, we recorded fish during 
periods of dark adaptation, light stimulus, light adaptation, and dark stimulus (Fig. 10A).

Visualization of fish trajectories during the four recording periods suggested reduced 
swimming in unfed fish, particularly at 7 dpf (Fig. 10B). Smoothed mean speed traces 
provided further insight into this pattern (Fig. 10C). During dark adaptation, both fed 
and unfed fish maintained stable activity levels, however this baseline activity level 
was lower in unfed fish, with the effect becoming more pronounced at 7 dpf. Interest-
ingly, the baseline activity level was essentially identical across fed fish regardless of age. 
Immediately following the light stimulus, both fed and unfed fish mobilized a rapid burst 
of activity before returning to the baseline activity level. Fed and unfed fish exhibited 
similar levels of activity during light adaptation and dark adaptation, with unfed fish 
again showing a lower level of activity which was more pronounced at 7 dpf. Strikingly, 
whereas the acute reaction to the dark stimulus was followed by a return to baseline in 
fed fish (albeit more gradually than was observed following the light stimulus), unfed 
fish maintained a heightened level of activity which resembled the baseline activity level 
of fed fish.

Analysis of maximum speed levels during the 5 s immediately following light or dark 
stimuli revealed no significant differences or interactions between age and feeding status 
for light stimuli (two-way ANOVA, F(1,174) = 3.537 for age, 1.608 for diet, and 2.401 for 
interaction, p > = 0.05 in all three cases). In contrast, immediately following dark stimuli 
unfed fish exhibited an attenuated response at 7 dpf, but not at 5 dpf (Figs. 10C and 11A), 
reflecting a main effect of diet (two-way ANOVA, F(1,174) = 21.659, p < 0.001) and an 
interaction between age and diet (two-way ANOVA, F(1,174) = 29.881, p < 0.001), but no 
main effect of age (two-way ANOVA, F(1,174) = 0.107, p > = 0.05). Further insights were 
gleaned by examining the number of swim bouts, which we define as beginning when a 
fish’s speed exceeds 2 mm/s and ending when the fish’s speed drops below this threshold. 
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Here, a main effect of diet was consistently observed during periods of dark adaptation, 
light stimulus, light adaptation, and dark stimulus (two-way ANOVA, F(1,178) = 144.94, 
100.513, 48.606, and 27.127, respectively, p < 0.001 during all four periods). However, a 
significant main effect of age was observed during only the first three of these periods 
(Fig.  11B) (two-way ANOVA, F(1,178) = 23.61, 11.855, 9.129, and 3.535, respectively, 
p < 0.001, p < 0.001, p < 0.01, and p > = 0.05, respectively). The interaction between age 
and diet followed a similar pattern (Fig. 11B) (two-way ANOVA, F(1,178) = 26.08, 9.942, 
8.146, and 0.504, respectively, p < 0.001, p < 0.01, p < 0.01, and p > = 0.05, respectively). 
In addition to the number of swim bouts, we also qualitatively examined the vigor of 
swim bouts by visualizing the durations and peak speeds of swim bouts for each fish 

Fig. 10 Visuomotor response trajectory traces and speed plots illustrate reduced swimming in unfed larvae. 
A Schematic of visuomotor response recording paradigm. B Representative trajectory traces for fed and 
unfed fish at 5 and 7 dpf during periods of dark adaptation, light stimulus, light adaptation, and dark stimulus. 
C Speed plots for fed and unfed fish at 5 and 7 dpf during periods of dark adaptation, light stimulus, light 
adaptation, and dark stimulus. Traces represent the mean plus and minus the standard error of the mean 
after applying a mean filter with a sliding window corresponding to 1 s. Data represents n = 44–46 fish per 
condition across 3 independent experiments
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(Fig.  11C). Whereas the swim bouts of fed and unfed fish generally align at 5 dpf, by 
7 dpf unfed fish exhibit less vigorous swimming behavior compared to fed fish as evi-
denced by their shorter and lower-speed swim bouts.

Discussion
Biological experiments

To demonstrate the utility of Marigold, we analyzed touch-evoked responses in 
slc1a2btk57/tk57 embryos and their wild type siblings, with the stimulus being applied 
to either the head or tail. We first replicated the known phenotypic differences in the 
touch-evoked response between slc1a2btk57/tk57 embryos and their wild type siblings 

Fig. 11 Detailed behavioral profiling reveals effects and interactions of age and diet on larval visuomotor 
responses. A Quantification of maximum speed during the first 5 s of the response to light and dark stimuli 
for fed and unfed fish at 5 and 7 dpf. B Quantification of swimming bouts for fed and unfed fish at 5 and 7 dpf 
during periods of dark adaptation, light stimulus, light adaptation, and dark stimulus. C Visualization of mean 
swimming bout duration and mean swimming bout maximum speed for fed and unfed fish at 5 and 7 dpf 
during periods of dark adaptation, light stimulus, light adaptation, and dark stimulus. Statistical significance 
determined by two-way ANOVA with Tukey post hoc; n.s.: not significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001; 
n = 44–46 fish per condition across 3 independent experiments
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when applying the stimulus to the head, including increases in response duration and 
the number of high amplitude body bends in slc1a2btk57/tk57 embryos. We then explored 
whether applying a stimulus to either the head or tail would further reveal distinct kin-
ematic profiles in slc1a2btk57/tk57 embryos. Within tail-stimulated responses, fewer 
embryos demonstrate an initial bend that passes the high amplitude threshold compared 
to head-stimulated embryos, regardless of genotype. Because the embryo is already ori-
ented away from the perceived threat when touched on the tail, reorientation via a high 
amplitude body bend may be less advantageous in this scenario.

We further show that while there are stimulus location differences in the maximum 
rostral–caudal angle that a wild-type embryo performs, those differences are lost in 
slc1a2btk57/tk57 embryos. Both head- and tail-stimulated slc1a2btk57/tk57 embryos reach 
the maximum rostral–caudal angle later in the response than wild-type embryos, which 
could help explain why no touch location differences were found for the maximum angle 
of slc1a2btk57/tk57 responses. Although slc1a2b is not expressed in the Mauthner cell, 
slc1a2b-expressing glial cells surround the Mauthner array at 48 hpf [37, 57]. Based on 
the data presented here, we propose that the disrupted kinematic profile of slc1a2btk57/

tk57 embryos may be due to a reactivation of escape circuitry late into the response.
Interestingly, slc1a2b mutants harboring nonsense mutations are able to swim spon-

taneously at 5 dpf [37], whereas the slc1a2btk57/tk57 allele described here and in [57] is 
fully paralyzed by 96 hpf. This difference could be explained by the nature of the muta-
tions; premature termination codons generated using CRISPR-Cas9 have been shown 
to trigger genetic compensation via transcriptional adaptation [22, 83]. Additionally, the 
slc1a2btk57/tk57 allele described here is maintained on a TL background, while [37] report 
using WIK and Tübingen wild-type strains. As notable differences have been reported 
between wild-type zebrafish strains [4, 56], this could also explain the difference in phe-
notypic severity. Lastly, [37] describe a mutation in exon 3 of slc1a2b while the mutation 
underlying slc1a2btk57/tk57 is located in exon 7 of slc1a2b [57].

We also used Marigold to examine visuomotor responses in wild-type larvae at two 
developmental stages and in fed and unfed states. Larval responses to the visuomotor 
response differ across developmental time  [19, 47]. The first startle responses to vis-
ual stimulation can be observed around 3 dpf [21]. By 5 dpf, larvae inflate their swim 
bladders, exhibit robust swimming behavior, and actively hunt for food. Larvae utilize 
nutrients from their yolks until at least 7 dpf, and it has been shown that feeding can be 
delayed until 8 dpf without negatively affecting juvenile survival or growth [35, 50, 73]. 
A previous study examining the effects of feeding on larval swim behavior, visual stimuli 
avoidance, and inter-fish distance reported significant behavioral differences between 
fed and unfed fish at 6 and 7 dpf, but no significant effects at 5 dpf [16]. This observation 
led to the recommendation that 5 dpf generally be preferred for behavioral experiments. 
However, the effect of feeding has not previously been evaluated with respect to visuo-
motor responses.

While our data confirm that feeding status has a more pronounced effect on visuomo-
tor response behavior at 7 dpf than at 5 dpf [16], we also provide evidence for significant 
effects of feeding on behavioral parameters even at 5 dpf. Thus, our results highlight the 
importance of reporting and controlling for developmental stage and feeding status in 
visuomotor response assays.
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In both sets of experiments, the in-depth behavioral profiling facilitated by Marigold 
led to novel findings, despite the slc1a2btk57/tk57 mutant having been previously charac-
terized and visuomotor responses being a widely adopted experimental paradigm.

Neural network experiments

To minimize the processing and memory demands of in-browser, on-device neural net-
works and thereby make them feasible for our zebrafish pose tracking web app, we intro-
duced new neural network variants originating from a series of macro-architectural and 
micro-architectural design decisions.

Our switch from a hierarchical architecture to an isotropic architecture led to consid-
erably faster training and inference speeds and a reduced memory footprint. Isotropic 
(also sometimes called isometric) architectures are relatively unexplored. [71]  intro-
duced a form of isotropic  neural network and noted its memory efficiency and other 
intriguing properties, although they ultimately found that it did not perform as well for 
image classification as more traditional hierarchical architectures. More recently, the 
Vision Transformer family of architectures, which draw inspiration from transformer-
based architectures for natural language processing, used patch embedding and isotropic 
design as a way to reduce the computational burden of self-attention used in transform-
ers [20, 90]. Some works have been successful in modifying Vision Transformer-like 
architectures to more closely resemble the hierarchical architectures traditionally used 
for computer vision [48, 100]. Meanwhile, other works have explored whether the patch-
based representation used by isotropic architectures may be useful in and of itself, per-
haps underlying much of the success of Vision Transformers [23, 86, 88].

Our switch from Batch Normalization to Instance Normalization led to improved 
training dynamics and allowed us to use gradient accumulation to reduce memory 
requirements. Although there has been a strong preference for Batch Normalization in 
neural networks for computer vision, alternatives such as Layer, Group, and Instance 
Normalization have increasingly found niches in which they are effective. [42], for exam-
ple, find Instance Normalization useful in U-Net-based architectures for semantic seg-
mentation of biomedical images. Also using U-Net for biomedical image segmentation, 
[60] use neural architecture search to explore the performance of different normaliza-
tion methods on a block-by-block basis, finding that Instance Normalization is preferred 
at most, but, interestingly, not all, positions. The ConvNeXt family of neural networks, 
which draws inspiration from Vision Transformer-like architectures where Layer Nor-
malization is predominant, found a benefit to switching from Batch Normalization to 
Layer Normalization, but did not test other normalization methods [48, 96]. Another 
line of work, which we did not pursue, seeks to eliminate normalization layers altogether 
(e.g., [11, 24, 101, 102]).

We also achieved greater training and inference speeds by removing some of the nor-
malization and activation layers present in the MobileNetV3 block. That the choice of 
which normalization and activation layers to retain led to different training outcomes 
emphasizes the importance of being strategic in the adoption of this approach. [48] also 
find some benefit to using fewer normalization and activation layers, although they use 
a standard ResNet bottleneck as their starting point and arrive at a somewhat different 
final configuration of layers.
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As the state of the art in machine learning continues to demand ever-increasing com-
putational resources to power deep neural network training and inference for computer 
vision and natural language processing applications, the associated carbon footprint 
exerts an increasingly negative impact on the environment [74, 82, 91, 99]. Thus, we 
feel the machine learning community has a moral responsibility to design more efficient 
neural networks. Our design choices highlight ways in which architectural optimizations 
can help to minimize the processing and memory demands of neural networks while 
leading to faster training convergence and inference speed. It is perhaps worth noting 
that we achieved our goal of reducing the processing and memory demands of neural 
networks for animal pose estimation primarily through architectural improvements, 
but a number of promising alternative strategies could have been explored instead or in 
addition, such as knowledge distillation, quantization, and pruning [18].

Comparison to existing free and open source software

Numerous free and open source software solutions are available for zebrafish behavio-
ral analysis, encompassing a wide range of tracking capabilities, implementation details, 
hardware requirements, expectations for programming experience, and degrees of 
specificity to zebrafish. While a comprehensive review of all such software is beyond the 
scope of this work, we summarize a number of representative tools below.

Among animal-agnostic solutions, several recently introduced tools have sought 
to make advances in machine learning-based pose estimation techniques available to 
researchers interested in analyzing animal behavior [27, 30, 55, 62]. These tools have tre-
mendously improved the precision with which animal pose tracking can be performed, 
but are not without limitations. Because these tools commonly use off-the-shelf neu-
ral network architectures which were originally designed for other datasets or tasks, the 
resulting models are frequently overparameterized and their training can be inefficient, 
often requiring the use of expensive GPUs. Additionally, such software can be challeng-
ing to install due to complex dependencies on language runtimes, libraries, and device 
drivers, as well as difficult to use due to workflows requiring integration of GUI-, com-
mand line-, and cloud-based elements. Additionally, most of these tools lack support for 
tracking animals in multiwell plates, a popular experimental paradigm for high-through-
put behavioral studies using larval zebrafish.

Many zebrafish-specific or small animal-specific tools have also been introduced. 
Relatively few of these use machine learning, with most instead relying on traditional 
computer vision techniques such as background subtraction, centroid tracking, and fol-
lowing local pixel intensity cues to identify different parts of the fish [3, 14–16, 43, 54, 
59]. These approaches can be adequate, but are often brittle, requiring carefully con-
trolled experimental setups to deliver reliable results and breaking down under adverse 
conditions such as the introduction of foreign objects into the field of view. Additionally, 
some of these tools are limited to only tracking a single keypoint. Those tools that incor-
porate machine learning-based tracking typically do so by drawing on one of the more 
general purpose tools described above, such as DeepLabCut, to provide the required 
functionality, and thus can inherit many of the same limitations as these tools such as 
a complex installation process and the requirement for a powerful GPU [28, 32, 81, 84, 
103]. A number of tools combine traditional or machine learning-based tracking abilities 
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with camera and other hardware integration, including affordable hardware setups such 
as those based on Raspberry Pi, to drive data collection and stimulus delivery for experi-
ments [32, 43, 76, 81, 84].

Marigold represents a notable departure from existing software primarily in its rela-
tive lack of hardware requirements, elimination of installation procedures, and focus on 
making robust, machine learning-based pose tracking more widely accessible to both 
students and researchers. To our knowledge, Marigold is the first free and open source 
software to perform machine learning-based animal pose tracking for behavioral analysis 
entirely in-browser and on-device, an approach which allows us to meaningfully lower 
the financial and technical barrier for performing this type of analysis. By implementing 
our software as a web app, we are able to take advantage of the web platform to deliver a 
rich user interface supporting a highly streamlined workflow, all without requiring any 
installation. The web app implementation also allows Marigold to run entirely within the 
security sandbox provided by the user’s web browser. Moreover, by designing a neural 
network architecture from the ground up to perform highly efficient animal pose esti-
mation and implementing this architecture using the recently introduced WebAssembly 
technology [33, 63], we are able to achieve reasonable training and inference speeds even 
on modestly powered computers lacking a dedicated GPU and despite the limited access 
to memory and computational resources web apps are permitted.

Future directions

Marigold’s ability to allow the user to create their own dataset and train custom models, 
while maintaining a focus on functionality that is of particular interest to the zebrafish 
community, makes the program applicable to a broad range of zebrafish behavioral 
experiments. For instance, in addition to the applications demonstrated here (i.e., analy-
sis of touch-evoked and visuomotor responses), we also have successfully used Marigold 
to analyze spinalized larvae, head-embedded larvae, and adult fish (data not shown). 
However, Marigold is currently limited to analyzing a single animal in each region of 
interest (ROI), a decision made to maintain the program’s simplicity and our focus on 
embryonic and early larval stages of zebrafish development, when social interaction is 
minimal [79]. Future work could extend Marigold to support the analysis of multiple fish 
in each ROI and for three-dimensional pose tracking, since both social interaction and 
three-dimensional swimming become more prominent during late larval and juvenile 
development  [52, 79]. Additionally, while we have successfully used Marigold for pose 
tracking of other animal species such as mice (data not shown), there is clearly an oppor-
tunity to more formally extend the web app-based approach of Marigold for pose track-
ing in other species and to adapt it for other types of behavioral analysis.

Finally, our WebAssembly-based implementation was able to obtain reasonable per-
formance on CPU, making our web app compatible with a wide range of platforms 
and devices and making it particularly valuable in low-resource settings. However, for 
devices equipped with a discrete GPU Marigold may leave performance on the table, 
especially when it comes to larger neural networks such as those we trained for our 
touch-evoked response dataset. The emerging WebGPU standard [93] could provide a 
means for Marigold to take advantage of advanced GPUs when they are available, help-
ing to close this performance gap. In the meantime, we note that Marigold may not be 
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suited for all types of behavioral recordings. Marigold is quite efficient for high-through-
put, low-resolution tracking with few keypoints, as exemplified by the models trained for 
analyzing visuomotor responses. It is also fast enough for high-resolution tracking with 
many keypoints when the recordings are relatively short, as exemplified by the models 
trained for analyzing touch-evoked responses, but may not be fast enough to make such 
high-resolution, many-keypoint tracking feasible for extended recordings.

Conclusions
Much of the existing software tools used for zebrafish behavioral analysis have con-
straints that limit their utility, including lacking support for efficient tracking in mul-
tiwell plates,  being cost prohibitive  or necessitating cost prohibitive hardware, or 
requiring substantial programming experience. Here, we describe Marigold, which aims 
to address these limitations. It is a free and open source web app that utilizes machine 
learning to perform zebrafish pose tracking. Marigold features efficient neural networks 
that allow for reasonable training and inference speeds even on basic laptop comput-
ers. We demonstrate the utility of Marigold by using it to uncover novel aspects of the 
tnt mutant touch-evoked escape response and of the effects of developmental stage and 
feeding on the larval visuomotor response. We expect that Marigold will serve as a user-
friendly tool to aid the zebrafish community in conducting robust, high-throughput 
behavioral analysis.
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