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Abstract 

Background: As single-cell genomics experiments increase in complexity and scale, 
the need to integrate multiple datasets has grown. Such integration enhances cellular 
feature identification by leveraging larger data volumes. However, batch effects-tech-
nical variations arising from differences in labs, times, or protocols-pose a significant 
challenge. Despite numerous proposed batch correction methods, many still have 
limitations, such as outputting only dimension-reduced data, relying on computation-
ally intensive models, or resulting in overcorrection for batches with diverse cell type 
composition.

Results: We introduce a novel method for batch effect correction named SCITUNA, 
a Single-Cell data Integration Tool Using Network Alignment. We perform evaluations 
on 39 individual batches from four real datasets and a simulated dataset, which include 
both scRNA-seq and scATAC-seq datasets, spanning multiple organisms and tissues. 
A thorough comparison of existing batch correction methods using 13 metrics reveals 
that SCITUNA outperforms current approaches and is successful at preserving biologi-
cal signals present in the original data. In particular, SCITUNA shows a better perfor-
mance than the current methods in all the comparisons except for the multiple batch 
integration of the lung dataset where the difference is 0.004.

Conclusion: SCITUNA effectively removes batch effects while retaining the biologi-
cal signals present in the data. Our extensive experiments reveal that SCITUNA will be 
a valuable tool for diverse integration tasks.

Keywords: Single-cell data integration, Batch effect, Rare cell types, Iterative 
correction

Background
Single-cell technology enables the identification of established as well as novel cell 
types and enhances our understanding of cell-specific molecular mechanisms [1]. 
While current protocols allow querying thousands of cells with a single experiment, 
combining data from multiple datasets further enhances the predictive power of 
computational methods. A major challenge in integrating multiple single-cell data-
sets is the presence of ’batch effects’ which represent unwanted technical variation 
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that result from handling cells in distinct batches. These differences can stem from 
the use of distinct sequencing protocols, platforms, and technologies as well as from 
variations in sample acquisition and sample composition. Batch effects also include 
differences due to biological factors such as tissues, spatial locations, and donors. 
Mitigating these batch effects is a mandatory step before analyzing integrated data, 
in order to avoid unwanted technical variations that might hinder the detection of 
true biological signals in the data [2, 3]. A successful integration of single-cell datasets 
ensures that similar cells are clustered together while the local neighborhood struc-
ture of the cells and the biological signals in the original data are preserved. Addition-
ally, cell types that are present exclusively in one dataset should remain isolated and 
not be merged with other cell types. Finally, the integration strategy should be robust 
against diverse single cell datasets, with different dropout rates and distinct cell type 
compositions.

Several different types of computational methods have been proposed for batch effect 
removal in single-cell data integration [4–6]. These methods can broadly be categorized 
to four groups: anchor-based, graph-based, hybrid methods that integrate both anchor-
based and graph-based techniques, and methods leveraging deep learning [7].

Most of the anchor-based methods adopt the Mutual Nearest Neighbors (MNN) strat-
egy to determine anchors [8–10]. Anchors are assumed to be cell pairs across batches 
that refer to the same cell type. MNN strategy identifies anchors as pairs of cells, one 
from each batch, that are within each other’s set of k-nearest neighbors. The next step 
is to integrate the different batches with correction vectors calculated from the mean 
differences in gene expression between cells in MNN pairs. MNNCorrect applies this 
strategy on the original space without reducing dimensionality, and this leads to high 
memory consumption and runtime [8]. To alleviate this problem, several methods are 
proposed to identify anchors in the reduced space instead. In particular, fastMNN [8] 
uses PCA and Seurat MultiCCA [9] captures the most correlated pairs in low dimen-
sional space determined with Canonical Correlation Analysis (CCA), whereas Scano-
rama [11] employs Singular Value Decomposition (SVD). Most of these methods 
perform batch correction for two batches at a time and repeat this process to integrate 
more than two batches. The ordering of batches can significantly affect the output. On 
the other hand, Scanorama identifies anchors across more than two pairs simultane-
ously. Harmony [12] utilizes a different strategy to identify anchors in PCA reduced 
space. This strategy is based on an iterative clustering algorithm where at each iteration, 
clusters with similar cells from diverse batches are formed by applying the soft k-means 
algorithm. Correction vectors are then calculated for each cluster and each batch using 
cluster centroids.

Graph-based methods use community detection algorithms on weighted graphs to 
identify shared cell populations across batches. Conos constructs a graph connecting 
cells within and across batches, using MNN for inter-batch edges and PCA for intra-
batch distances [10]. Common clusters are then detected using community detection 
algorithms. BBKNN builds graphs by identifying k-nearest neighbors within each batch 
and merging them with distance metrics similar to UMAP[13]. LIGER uses integrated 
non-negative matrix factorization (NMF) to create a graph based on batch-specific and 
shared factors, followed by clustering with Louvain algorithm [14].
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Deep learning-based methods have also become popular for batch effect correction. 
ScGen [15] uses transfer learning with variational autoencoders for dataset adjustment, 
but requires supervised cell type input. SAUCIE employs autoencoders to correct batch 
effects by minimizing reconstruction error [16]. scVI [17] combines a variational autoen-
coder with a Bayesian model to model observed counts, while scANVI extends scVI with 
semi-supervised learning using cell type labels [18–20].

Many challenges still exist in batch effect correction for single cell datasets. Most exist-
ing methods output low-dimensional representations of the original data. The absence 
of gene expression data for individual genes hinders downstream analysis such as dif-
ferential gene expression. Methods such as scVI are computationally demanding and 
semi-supervised/supervised nature of scGen and scANVI hinder their robust applica-
tion. Also, some methods change both the reference and the query dataset concurrently 
making it unsuitable for integrating user-generated datasets with standard reference 
data such as the Human Cell Atlas. Another key issue of batch correction methods is 
overcorrection where true biological signals present in the dataset can be regarded as 
batch effects and removed. To overcome these challenges in single cell data integration, 
we propose a novel graph and anchor-based method called SCITUNA, Single- Cell Data 
Integration Tool Using Network Alignment. SCITUNA improves over existing anchor-
based approaches in a number of ways. A novelty of SCITUNA is its use of MNN-based 
anchors as a basis to produce an alignment which is a many-to-one mapping between 
the two batches. This alignment guides the calculation of correction vector for each cell 
which is a combination of two terms: the difference between the cell and its aligned cell, 
the sum of the analogous differences for the neighbors of the cell. Another key contri-
bution of SCITUNA is its application of an iterative procedure for integrating cells not 
involved in an alignment. For such cells, only neighbors contribute to the calculation of 
correction vectors and iterative application of these calculations enables the diffusion of 
information in the network of cells. This strategy significantly improves the integration 
of batches that have distinct cell type composition. Furthermore, SCITUNA outputs 
the integrated matrix in the original gene expression space which allows downstream 
applications such as differential gene expression analysis. Finally, SCITUNA uses a novel 
optimal transport based ordering strategy for integrating more than two batches.

We compare SCITUNA with existing state-of-the-art batch correction methods on 
real and simulated single-cell datasets with varying degrees of cell population and cell 
type differences. Performance comparisons with a diverse set of metrics show that SCI-
TUNA performs better than the alternatives in effectively removing batch effects while 
retaining the biological signals present in the data. Additionally, we assess the integra-
tion of individual pairs of batches qualitatively using UMAP plots. Moreover, SCITUNA 
scales well to large datasets. SCITUNA is freely available at https:// github. com/ abu- 
compb io/ SCITU NA.

Methods
We introduce a novel method for batch effect correction named SCITUNA, a Single-
Cell data Integration Tool Using Network Alignment. SCITUNA represents the intra-
batch cell similarities with a graph per batch and the similarities between the batches 
with a bipartite graph. These graphs are utilized to produce an alignment between the 

https://github.com/abu-compbio/SCITUNA
https://github.com/abu-compbio/SCITUNA
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two batches. This alignment subsequently guides the integration process, transforming 
the expression values of cells from one batch into the expression space of another. Dur-
ing the transformation step, a novel iterative correction strategy is applied to those cells 
that do not appear in the alignment. Furthermore, integration is performed in the origi-
nal gene expression space which allows downstream applications such as differential 
gene expression analysis. Finally, a novel ordering strategy based on optimal transport 
guides the ordering of the batches when more than two batches are present.

Depending on the number of cells in each batch, the batch with the smaller number of 
cells is set as the query and the other as the reference. In what follows we discuss in detail 
each component of the SCITUNA algorithm; see Fig. 1 for an overview.

Data collection and preprocessing

To evaluate our method, we utilize three scRNA-seq datasets and two scATAC-seq data-
sets. The datasets for the former can be listed as human lung dataset, human pancreas 
dataset and the mouse hindbrain development dataset. The latter is formed from peaks 
and windows of small mouse brain scATAC-seq dataset. We download already pro-
cessed data in the form of read counts or log normalized counts for these datasets from 
[21] and [22]. Additionally, we employ the Splatter package [23] to simulate a dataset 
with two batches that each contain three cell types with proportions of 20%, 20%, and 
60%. Batch effects are modeled with batch.facLoc and batch.facScale parameters that are 
set to 0.05 and 0.1, respectively. Dropout is applied using the “experiment” method, with 
dropout.shape parameter set to −0.5. These settings capture variability and sparsity typi-
cal of scRNA-seq data. Table 1 provides an overview of these datasets and the number of 
cells in each batch of employed datasets is shown in Supplementary Tables 1-6.

Since SCITUNA integrates two batches at a time, we split each dataset into pairs of 
batches, resulting in a total of 120, 36, 15, 3, 3, and 1 batch pairs for the lung, pancreas, 

Fig. 1 The five main stages of the SCITUNA workflow: a preprocessing and normalization, b dimensionality 
reduction and clustering, c construction of intra-graphs and the inter-graph, d anchor selection, e integration, 
and f visualization of the integration results
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mouse hindbrain, small mouse brain windows, small mouse brain peaks and simulation 
datasets, respectively. The next step is to identify highly variable genes (HVGs) using 
scIB’s “hvg_batch” function [21, 35]. After HVG selection, we obtain two matrices: Dq 
an n× g matrix and Dr an m× g matrix, where the subscripts q and r denote query and 
reference batches, respectively. Here, n and m are the numbers of cells in the query and 
reference batches, respectively, and g is the number of genes where g = 2, 000 . Note that 
exactly the same procedure is applied to peaks or windows for scATAC-seq datasets.

Dimensionality reduction and clustering

We apply Principal Component Analysis (PCA) on Dq , Dr and Dqr which denotes the 
concatenation of Dq and Dr . The number of principal components is set to 100 for each 
dataset [36–38]. The dimensionality reduced matrices are denoted with Sq , Sr and Sqr , 
respectively.

Next we use the k-means algorithm to cluster each dataset, Sq and Sr . To choose the 
number of clusters, kc , we utilize the silhouette index approach. This approach evalu-
ates the quality of clustering results by varying kc between 2 and 30, and measuring the 
silhouette coefficient for each of its values. The silhouette coefficient measures how well 
each data point fits into its assigned cluster compared to other clusters. The silhouette 
coefficient ranges from −1 to 1, where a value close to 1 indicates that the data point is 
well-matched to its cluster and a value close to −1 indicates that the data point is likely 
assigned to the wrong cluster. After calculating the average silhouette coefficient values 
across all the data points, we select the value of kc that results in the highest average 
coefficient.

Constructing the intra‑graphs and the inter‑graph

We construct three edge-weighted graphs: Gq , Gr , and Bqr . The first two are directed 
graphs constructed from the query and reference matrices, Sq and Sr , respectively, and 
are referred to as intra-graphs. They capture the similarity between the cells within each 
batch.

In what follows, we describe the construction of Gq , noting that the construction of 
Gr is analogous. Each node in Gq represents a cell in Sq. To determine the edges to be 
inserted to 
Gq , Pearson correlation coefficient values are calculated between all pairs of cells in Sq . 

The cell pairs are then sorted based on these values, where the most positively correlated 
cell pairs appear at the top. We use pq to denote the total number of edges to be inserted 

Table 1 Statistics of employed datasets

Dataset Batches Cells Features References

Humal lung atlas (scRNA-seq) 16 32,472 15,148 [24]

Human pancreas (scRNA-seq) 9 16,382 19,093 [25–30]

Mouse hindbrain (scRNA-seq) 6 34,120 21,514 [31]

Small mouse brain (ATAC) peaks 3 11,597 94,088 [32–34]

Small mouse brain (ATAC) windows 3 10,761 110,724 [32–34]

Simulation data 2 30,000 2,000
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to Gq and set it to the size of the smallest cluster in Sq . The cell pairs with the top Pear-
son correlation coefficients (5% by default) give rise to edges between corresponding 
node pairs in Gq without any further checks. Next, we continue to traverse the ranked 
list of cell pairs to insert bidirectional edges between node pairs if the corresponding cell 
pairs belong to the same cluster in Sq , until the total number of edges reaches the desired 
threshold of pq . The edge weights are set as the Euclidean distances between the corre-
sponding pairs of cells in Sq.

The third graph, Bqr , which we call the inter-graph is a complete undirected bipar-
tite graph, where one partition contains nodes corresponding to the cells of the query 
batch and the other partition contains nodes corresponding to the cells of the reference 
batch. The inter-graph captures the similarity between pairs of cells from each of the two 
batches. Therefore, the edge weights are set as the Euclidean distance between the cor-
responding query cell and reference cell in the combined reduced space, that is Sqr.

Aligning query nodes through anchor selection

This step involves the alignment of a query node with a reference node, such that the 
alignment corresponds to a similar biological state across the two batches. The resulting 
alignments are used to integrate the query dataset with the reference dataset. To com-
pose the alignments, we use Seurat’s anchor selection approach [39] as a baseline. We 
note that Seurat’s anchor selection procedure outputs a many-to-many matching. We 
further process this many-to-many matching to produce an alignment which is a many-
to-one mapping. For a query cell qi , let M(qi) be the set of reference cells mapped to qi 
by the matching provided by Seurat. We assign the pair (qi, rj) as an alignment denoting 
it with the mapping A(qi) = rj where rj ∈ M(qi) is the closest matching reference cell 
to qi among all cells in M(qi) . The distance between each query and reference cell pair 
is based on the Euclidean distance calculated in the combined reduced space Sqr . Note 
that multiple query cells can be aligned with the same reference cell, whereas for a given 
query cell there is at most one reference cell it is aligned to.

Integrating the batch pair

The core of the SCITUNA algorithm is the integration procedure which consists mainly 
of four steps.

Handling isolated nodes

The intra-graphs Gq and Gr may contain isolated nodes. The number of isolated nodes 
depends on the number of edges inserted during the graph construction step. Since the 
subsequent integration process assumes that all nodes have neighbors, we add dq closest 
neighbors to all isolated query nodes and dr closest neighbors to all isolated reference 
nodes, where dq , dr correspond to the minimum degree (excluding the isolated nodes) 
of the query graph Gq and that of the reference graph Gr , respectively. The distance 
between the neighbors is defined by the Pearson correlation coefficient values between 
the nodes in the intra-graph. Note that we add directed edges from the isolated node to 
its neighbors to meet the requirements of the subsequent integration step. However, we 
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do not insert these edges in the opposite direction, since the neighbors of the isolated 
nodes may already have neighbors unless they are isolated nodes themselves.

Integration vectors of alignment nodes

In this step, for each query cell qi that is involved in an alignment pair as defined by 
the mapping A, an integration vector Iv(qi) is first initialized to be the difference vec-
tor between qi and its aligned cell A(qi) in the reference dataset. Note that this dif-
ference is calculated in the log normalized space, namely using Dq and Dr . Next, it is 
updated to be a convex combination of its own Iv vector and that of its neighbors in 
Gq with an alignment mapping. More specifically, let N(u) denote the k closest neigh-
bors of a node u in its intra-graph, where the distances are defined with respect to the 
edge weights in the intra-graph. Iv(qi) is updated as follows:

Here the factors α0,αp are defined as:

where S =
∑

∀qp ∈N (qi)
αp , β is a balancing parameter between the intra-graph distances 

and the inter-graph distances, and the distance function d stores the edge weight of the 
involved nodes in the relevant graph. Note that we assessed a range of values for the 
parameter β between 0 and 1, in increments of 0.1, and the default setting of β = 0.5 
provided better performance than the other values.

Iterative Corrections on Non‑Alignment Nodes

For the query nodes not involved in an alignment we employ an iterative correction 
procedure. For a given such node qi , we apply the formula in Equation 2.5.2, except 
that now only the summation term contributes to the Iv formula. Furthermore, a 
neighbor qp contributing to the formula can now be any node (aligned or not) and 
therefore αp is now set to 1S [β e−d(qi ,qp)] if qp is a non-alignment node. Finally, a major 
difference between the computation of the Iv vectors of non-alignment query nodes 
and that of the aligned nodes is that the formula is now applied iteratively. These iter-
ative corrections are applied until convergence, that is until there is no change in the 
computed vectors as compared to a previous iteration or until a maximum number of 
iterations is reached (default 10,000).

Final integration of the batches

In the final step of our integration algorithm, the integration vectors are used to 
transform the query cells, leaving reference dataset as unchanged. Each row qi in Dq 
is assigned to qi + Iv(qi) . The transformed query dataset is then concatenated to the 
original reference dataset to produce an (n+m)× g  integrated matrix.

Iv(qi) = α0 Iv(qi) +
∑

∀qp ∈N (qi)

αp Iv(qp)

α0 =
1

S
[β + (1 − β) e−d(qi ,A(qi))]

αp =
1

S
[β e−

d(qi ,qp)+ d(A(qi),A(qp))

2 + (1− β) e−d(qp ,A(qp))]
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Integration of multiple batches

We also generalize SCITUNA to enable the integration of multiple batches in addi-
tion to the integration of a pair of batches. Since SCITUNA integrates two batches 
at a time, an effective ordering of batches is crucial. Our strategy utilizes an itera-
tive process in which we select the two most similar batches for integration, based on 
optimal cost score. Once integrated, these batches form a new composite batch and 
similarity scores are recalculated with the composite batch. The next iteration selects 
the two most similar batches again; where the batch pair to be integrated may include 
the composite batch or it may involve two batches that are not integrated with any 
other batch yet. This process continues iteratively until all batches have been inte-
grated. To illustrate this approach, consider an example with four batches labeled A, 
B, C, and D. Suppose we begin by integrating batches A and B, as they are identified 
as the most similar pair. The resulting dataset, denoted as AB, is then used to calcu-
late the similarity scores with batches C and D. In the next iteration, we select the pair 
with the highest similarity from among AB-C, AB-D, and C-D.

Let Si and Sj denote dimensionality reduced input matrices. We define the similarity 
score as the optimal transport cost between Si and Sj . Specifically, we construct a cost 
matrix CMi,j of size (n×m) , where n and m represent the number of cells in Si and Sj , 
respectively. This matrix consists of the Euclidean distances between each pair of cells 
from the two batches. Additionally, we establish a uniform distribution over the cells in 
both batches by initializing two probability distributions, Ui and Uj , with equal weights 
assigned to each cell. We then calculate the optimal transport cost using the Earth Mov-
er’s Distance [40], which quantifies the minimum cost required to transform one distri-
bution into the other based on the cost matrix (using emd2 from the Python package 
POT: Python Optimal Transport v0.9.4) [41].

Results
We compare SCITUNA against four of the aforementioned methods, namely Seurat, 
fastMNN, Scanorama, and SAUCIE. We employed the scIB-pipeline package to execute 
them [21]. We are unable to add Harmony, LIGER to this comparison as they provide 
output in the low dimensional space. Similarly, we cannot compare against BBKNN as it 
outputs a graph only. Lastly, scGEN and scANVI are not comparable since they require 
cell type labels as input.

Metrics for measuring integration accuracy

We use the metrics defined in the scIB package for the evaluations. These metrics are 
grouped into two main categories: batch correction and biological conservation met-
rics. Batch correction metrics focus on removing batch effects and include the Princi-
pal Component Regression (PCR) score, Average Silhouette Width (ASW) score (batch), 
graph connectivity score, and Integrated Local Inverse Simpson Index (iLISI) score. 
Biological conservation metrics assess the preservation of biological variance, including 
Normalized Mutual Information (NMI) score, Adjusted Rand Index (ARI) score, ASW 
(cell-type) score, Cell-type LISI (cLISI) score, isolated label F1 score, isolated label sil-
houette score, cell-cycle (CC) conservation score, and Highly Variable Genes (HVG) 
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conservation score. Note that for iLISI and cLISI scores, we have modified the scIB 
implementation to align it with the original R package implementation from [42]. In 
addition to the metrics from the scIB package, we incorporate another metric called the 
over-correction score defined in [43]. It assesses the degree of over-correction, which is 
calculated as the percentage of neighboring cells with inconsistent cell types among the 
100 nearest neighbors. Another metric for measuring batch effects in scIB package is 
kBET [44]. This metric evaluates whether the local distribution of dataset labels is con-
sistent with the global distribution. However, since kBET suffers from a significant limi-
tation in accurately measuring batch effects when the datasets have different cell-type 
compositions, we have excluded it from our evaluations [12, 44, 45]. Formal definitions 
of all these metrics are available in Supplementary File 1.

The overall score for each method is the weighted mean of the batch correction and 
the bio-conservation score (as defined in [21]):

where Scorebio corresponds to the average of the biological conservation metrics, and 
Scorebatch is the average of the batch correction metrics. Note that the weights 0.6 and 
0.4 were previously used in [21] and a higher weight for bio-conservation is given to 
emphasize the preservation of biological signal present in the data.

Lung dataset results

We first use the Lung atlas to assess the performance of SCITUNA as compared to 
the four alternative methods. This atlas consists of three datasets for a total of 16 
donors where the datasets are generated using distinct technologies and sampling 
techniques; see Supplementary Table 1 for a list of the number of cells in each batch. 
The aggregated evaluation scores are shown in Figure-2-a for all the considered meth-
ods and the scores for individual metrics are available in Table 2. SCITUNA shows 
the best performance with an overall score of 0.694, followed by Seurat (0.691), fast-
MNN (0.666), Scanorama (0.662), and SAUCIE (0.618) respectively. In terms of the 
aggregated biological conservation score, SCITUNA outperforms all other alternative 
methods. It is followed by Scanorama, Seurat, fastMNN, and SAUCIE in the order 
of decreasing performance. When we explore the individual metrics in the biological 
conservation group in more detail, we observe that SCITUNA, fastMNN, and Scano-
rama scores are close to each other for the majority of the metrics. SAUCIE performs 
the worst for all the metrics except for the isolated label silhouette score and the HVG 
conservation score. The difference between SAUCIE and the second-worst method is 

Scoreoverall = 0.6× Scorebio + 0.4 × Scorebatch

Fig. 2 Summary of the performance of SCITUNA, Scanorama, fastMNN, Seurat, and SAUCIE in terms of their 
overall performance scores for the Lung dataset. a Aggregated evaluation scores for 120 batch pairs within 
the Lung dataset. b Overall scores for integrating A2 and A3 batch pair. c Overall scores for integrating B3 and 
B4 batch pair. d Overall scores of multi-batch integration
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substantial for most metrics, such as a difference of 0.343 and 0.645, respectively, for 
the ARI cluster/label score. We also observe notable differences between the HVG 
conservation scores obtained by the various methods. The highest HVG conservation 
score is obtained by SCITUNA which is followed by Seurat. The other methods per-
form significantly worse and they rank as follows from highest to lowest: Scanorama, 
SAUCIE, and fastMNN.

When we assess the performance in terms of batch correction metrics, we observe 
that SAUCIE is the top performing method which is followed by Seurat, SCITUNA, 
fastMNN and Scanorama. SAUCIE’s performance varies significantly across the indi-
vidual batch correction metrics; it ranks the worst in terms of batch ASW and graph 
connectivity, whereas it performs the best in terms of PCR batch score and iLISI. In 
particular, iLISI scores of SAUCIE and the second best method are 0.560 and 0.289 
indicating a large difference. SAUCIE’s extreme performance for iLISI together with 
its poor ranking in terms of biological conservation score indicates that it overcor-
rects the batch effects at the expense of poor biological effect conservation. On the 
other hand SCITUNA’s competitive batch correction score together with its top per-
formance in biological conservation score indicates its ability to balance these two 
objectives.

In Fig. 2-b and c, we present the results for two specific batch pairs (see Supplemen-
tary File 2 for the results of other batch pairs); the most similar and the least similar 
batch pairs, where similarity is based on gene expression profiles of the batches. Spe-
cifically, for each cell type, we calculate the pairwise cosine similarity scores between 
cell pairs belonging to that specific cell type from each batch. The similarity score 
for a cell type is then determined as the average of these pairwise cosine similari-
ties. Finally, the overall similarity score for the batch pair is computed as the average 
of the similarity scores across all cell types. Figure  2-b contains the results for A2 
(1,454 cells) and A3 (1,226 cells) batch pair which demonstrate the highest similarity 
score. We observe that SCITUNA outperforms all the alternatives in terms of overall 
score with a large margin. Namely, the ranking of the method from best to worst is 
as follows: SCITUNA (0.744), fastMNN (0.699), Seurat (0.694), SAUCIE (0.694), and 
Scanorama (0.630). Regarding the biological conservation score, SCITUNA slightly 
trails behind Seurat, with a marginal difference of 0.002. In terms of batch correc-
tion score, SCITUNA shows the top performance with a s core of 0.781, followed by 
SAUCIE (0.775), fastMNN (0.772), Seurat (0.653), and Scanorama (0.576).

Figure  2-c shows the results of the integration of batch B3 (1,911 cells) and B4 
(2,353 cells) pair which have the the lowest similarity score. We observe that SCI-
TUNA outperforms all the alternatives in terms of overall score, aggregated biological 
conservation score, and aggregated batch correction score. SCITUNA’s superior per-
formance compared to SAUCIE in terms of the batch correction metrics is notable, 
particularly considering SAUCIE’s tendency to overcorrect for batch effects. Among 
biological conservation metrics, Scanorama, fastMNN, and SAUCIE perform poorly 
in terms of the HVG conservation score. All the methods result in lower scores for 
the metrics within the biological conservation group for integrating the B3-B4 batch 
pair as compared to integrating the A2-A3 batch pair (see Supplementary File 2 for 
more details). This is expected due to the low similarity between the two batches. An 
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exception is the isolated label F1 score where the scores for the A2-A3 batch pair are 
particularly low. We confirm that this is due to the existence of very few isolated cells 
in A2-A3 integration. All the methods struggle to accurately separate these cells from 
other types of cells.

Figure 2-d shows the results of integrating multiple batches within the Lung atlas data-
set. The results indicate that fastMNN and SCITUNA are closely ranked, both achieving 
high scores of 0.66 and 0.656, respectively. They are followed by Seurat (0.631), Scano-
rama (0.628), and SAUCIE (0.457). In terms of the aggregated biological conservation 
score, SCITUNA slightly trails behind Scanorama, with a marginal difference of 0.005, 
followed by fastMNN, Seurat, and SAUCIE. Specifically, SCITUNA demonstrates strong 
performance in most of the metrics in this category. In terms of HVG and cell cycle 
conservation, SCITUNA achieves scores of 0.516 and 0.826, respectively. Scanorama 
is ranked as the second-best method for these metrics, with scores of 0.384 and 0.771, 
respectively. We observe that SAUCIE, Seurat, and fastMNN over-correct the data dur-
ing batch mixing, resulting in a loss of biological information. This issue is reflected in 
their batch correction scores, where both Seurat and fastMNN exhibit high batch cor-
rection scores while still demonstrating low biological conservation scores. In contrast, 
SCITUNA performs very closely to these methods while effectively preserving relevant 
biological information despite batch effects. As shown in Supplementary Table  1, the 
Lung dataset contains groups of batches with highly similar cell type composition, while 
significant differences exist between the cell type compositions across these groups. 
To demonstrate that SCITUNA’s superior performance is not solely attributed to the 

Fig. 3 UMAP plots of the Lung dataset: a A2-A3, b B3-B4 batches, and c multi-batch integration before 
and after integration using SCITUNA, Scanorama, fastMNN, Seurat, and SAUCIE. Each subfigure is labeled 
according to cell type identities in the first row and batch identities in the second row
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integration of batches with diverse cell type compositions, we repeat our experiments 
using a subset of batches with similar cell type compositions (i.e., A1-A2-A3-A4-A5). 
Supplementary Figure 1 presents the results, which show that SCITUNA continues to 
achieve top performance, indicating its robust efficacy in this scenario as well.

Figures 3-a and b show the UMAP plots illustrating the original data and the outputs 
of integration methods for the batch pair A2-A3 and the batch pair B3-B4, respectively 
(see Supplementary Figures  2-121 for the UMAP plots of other batch pairs). For the 
batch pair A2-A3, we observe that SCITUNA and Seurat outperform the other methods 
regarding batch mixing. On the other hand, Scanorama and fastMNN show insufficient 
mixing of batches within the cluster of ciliated cells. Scanorama also struggles to effec-
tively mix endothelial cells from both batches. Unlike other methods, SAUCIE produces 
large loose clusters with inadequate batch mixing for a subset of ciliated cells. In terms 
of cell types, we observe that Basal 1 and Basal 2 cell types are consistently close to each 
other, as expected. Additionally, the proximity of ciliated cells to basal cells aligns with 
the known biological phenomenon of basal cells differentiating into secretory cells. All 
the methods struggle in separating immune cell types from each other i.e., macrophages, 
dendritic cells, mast cells, and neutrophils. This difficulty is expected due to the rela-
tively small number of cells from each immune cell type. Among all the methods, Scano-
rama is the only method which mixes endothelial cells with immune cells. Interestingly, 
SCITUNA positions ionocytes close to the cluster of immune cell types diverging from 
other methods which separate ionocytes from other cell types. Another observation 
relates to a subset of ciliated cells situated close to secretory cells. Remarkably, this 
subpopulation comprises cells from both batches, indicating distinctive characteristics 
confirmed by both data sources. This subpopulation is located closer to the cluster of 
secretory cells across the outputs of the majority of the integration methods. Another 
notable observation is that, in contrast to other methods, SAUCIE places immune cell 
types near the large clusters containing secretory and basal cells.

For the B3-B4 batch pair, we observe that SCITUNA produces clusters that evenly mix 
cells from different batches. The other methods perform similarly with the exception of 
fastMNN which shows difficulty in mixing a subset of cells from B3 with the other batch. 
In terms of cell types, all the methods struggle in distinguishing the large number of B 
cells from other cell types including macrophages, type 2, ciliated, and lymphatic cells. 
Notably, Seurat positions a small set of B cells from B3 batch apart from the main cluster 
of B cells. Additionally, the UMAP plot of the original dataset reveals a subpopulation 
of fibroblast cell type which only contains cells from B3 batch. Scanorama and Seurat 
position this subpopulation separately from the main cluster of fibroblasts, whereas SCI-
TUNA and fastMNN are better at integrating it to the main fibroblast cluster. Another 
notable difference arises with Scanorama which separates two small subpopulations of 
ciliated cells from the main ciliated cell cluster. Furthermore, all the methods have simi-
lar difficulties in accurately clustering secretory cells apart from other cell types, indicat-
ing a common challenge in discerning this particular cell type.

Figure 3-c shows the UMAP plots illustrating the original data and the outputs of inte-
gration methods for multiple batch integration. We observe that SCITUNA and Scano-
rama accurately separate cell types while mixing the batches. In terms of cell types, 
we observe that endothelial cells form multiple groups in the unintegrated dataset, 
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indicating a high level of heterogeneity within this cell type. In contrast, SCITUNA cre-
ates a compact and distinct cluster for endothelial cells, effectively grouping the majority 
of them together. Conversely, the other methods either separate these cells into distinct 
groups or mix them with other cell types. Namely, Scanorama separates endothelial 
cells into two distinct clusters, while fastMNN and Seurat fail to separate them from 
fibroblasts or lymphatic cells, respectively. Similarly, SCITUNA distinguishes itself from 
other methods by effectively clustering mast cells. Scanorama separates mast cells into 
two distinct groups whereas Seurat and SAUCIE merge them with other cell types. Fur-
thermore, neutrophils (CD14 high), dendritic cells, and macrophages cluster closely 
together, forming dense and distinct groups in SCITUNA, Scanorama, and fastMNN, 
whereas Seurat produces larger and more dispersed groupings. SCITUNA also creates a 
distinct and well-separated cluster for T/NK cells, with minimal mixing with other cell 
types. In contrast, Scanorama separates them into two different groups whereas Seurat 
and SAUCIE mix these cells with other immune cells. Fibroblast cells form three distinct 
groups in the original dataset. SCITUNA and fastMNN succeed in grouping most of 
these cells together, separating them from other cell types. In contrast, Scanorama clus-
ters them into three distinct groups, whereas Seurat’s integration results in less defined 
boundaries between fibroblast, macrophage and B cells. Lastly, as mentioned before, 
SAUCIE demonstrates poor performance in both mixing the batches and separating the 
cell types effectively.

Pancreas dataset results

We next use the Pancreatic dataset to assess SCITUNA’s performance; see Supplemen-
tary Table 2 for a list of the number of cells in each batch. The evaluation scores for SCI-
TUNA and the other four methods are shown in Figure-4-a. SCITUNA shows the best 
performance with an overall score of 0.743, followed by Seurat (0.736), fastMNN (0.710), 
SAUCIE (0.709), and Scanorama (0.693). The scores for individual metrics across all the 
methods are available in Supplementary File 2. In terms of biological conservation, SCI-
TUNA outperforms other methods, leading with a score of 0.734. The ranking of the 
other methods from best to worst is as follows: Seurat (0.728), Scanorama (0.713), fast-
MNN (0.682), and SAUCIE (0.671). If we consider individual metrics within the biologi-
cal conservation category, we observe that SCITUNA, fastMNN, Scanorama, and Seurat 
scores are close to each other for the majority of the metrics except for the CC conserva-
tion and the HVG conservation scores. For these two metrics, Scanorama and fastMNN 
perform much worse than the other methods. Additionally, SAUCIE’s performance 
diverges from the other four methods significantly, scoring notably lower in metrics such 

Fig. 4 Summary of the performance of SCITUNA, Scanorama, fastMNN, Seurat, and SAUCIE in terms of their 
overall performance scores for the Pancreatic dataset. a Aggregated evaluation scores for 36 batch pairs 
within the Pancreatic dataset. b Overall scores for integrating CEL-Seq2 and SMART-Seq2 batch pair. c Overall 
scores for integrating Fluidigm C1 and inDrop3 batch pair. d Overall scores of multi-batch integration
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as NMI cluster/label, ARI cluster/label, isolated label F1, and the overcorrection score. 
On the other hand, in terms of cell type ASW, and CC conservation scores, SAUCIE 
exhibits superior performance compared to the other methods though the difference 
from the second-ranking method is marginal.

Scanorama performs significantly worse than the other methods in terms of aggre-
gate batch correction score. The rankings for each individual metric in this group vary. 
Namely, the top method for Batch ASW and PCR batch metric are SCITUNA and Seu-
rat, respectively. Notably, iLISI reveals substantial differences among the methods, with 
SAUCIE achieving the highest score of 0.546, followed by fastMNN at 0.31 and SCI-
TUNA at 0.303. In contrast, Scanorama, which performs the worst, only achieves a 
score of 0.071.

Similar to the lung dataset, we show detailed results for two selected batch pairs. CEL-
Seq2 (2,285 cells) and SMART-Seq2 (2,394 cells) are determined as the most similar 
batch pair, and Fluidigm C1 (638 cells) and inDrop3 (3,605 cells) are determined as the 
most dissimilar batch pair. Note that the similar and the dissimilar pairs are determined 
using the same procedure employed for the Lung dataset. The aggregated scores for both 
pairs of batches are shown in Figure-4-b and Figure-4-c, respectively (see Supplemen-
tary File 2 for the results of other batch pairs). For CEL-Seq2 and SMART-Seq2 batches, 
we observe that SCITUNA outperforms the other methods with respect to the over-
all score (0.817) and the batch correction score (0.863). The rankings of the rest of the 
methods are as follows from best to worst in terms of overall score: Seurat (0.787), fast-
MNN (0.781), Scanorama (0.773), and SAUCIE (0.772). In terms of the batch correction 
score they are ranked as follows: fastMNN (0.857), SAUCIE (0.848), Seurat (0.785), and 
Scanorama (0.775). In terms of the biological conservation scores, Seurat outperforms 
SCITUNA with a marginal difference of 0.003. The ranking of the methods from the best 
to the worst is as follows: Seurat (0.789), SCITUNA (0.786), Scanorama (0.771), fast-
MNN (0.73), and SAUCIE (0.721).

For Fluidigm C1 and inDrop3 batches, SCITUNA again has the best overall score 
(0.752) and batch correction score (0.773), followed by Seurat (0.745, 0.751), fastMNN 
(0.701, 0.715), Scanorama (0.698, 0.684), and SAUCIE (0.656, 0.683). In terms of the bio-
logical conservation score, the ranking of the methods is as: Seurat (0.741), SCITUNA 
(0.738), Scanorama (0.708), fastMNN (0.692), and SAUCIE (0.637). To summarize, SCI-
TUNA’s top overall performance in integrating this batch pair indicates that its integra-
tion strategy preserves biological information without over-correcting batch effects.

An interesting comparison can be made between the scores obtained for the inte-
gration of CEL-Seq2 - SMART-Seq2 batch pair and Fluidigm C1 - inDrop3 batch pair. 
We observe that the methods perform dramatically worse in terms of isolated label F1 
score and iLISI score for the latter batch pair which is in line with the fact that these two 
batches are quite diverse.

Figure  4-d depicts the results of integrating multiple batches within the Pancreatic 
dataset. The results indicate that SCITUNA achieves the top overall score (0.706). The 
ranking of the other methods from best to worst is as follows: Seurat (0.701), fastMNN 
(0.688), Scanorama (0.644), and SAUCIE (0.611). Additionally, SCITUNA achieves 
the top aggregated biological conservation score of 0.695, followed by Seurat (0.688), 
fastMNN (0.655), Scanorama (0.620), and SAUCIE (0.591). When considering the 
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aggregated batch score, we observe that fastMNN leads with a marginal difference of 
0.014, followed closely by SCITUNA and Seurat. In contrast, while SAUCIE shows the 
highest iLISI score, it also has the lowest aggregated batch correction score and exhibits 
issues with over-correction.

UMAP visualization of the original data in Fig. 5-a shows that the cell types from each 
batch are located far apart indicating strong batch effects. On the other hand, most of 
the cell types have clear boundaries indicating homogeneity within each type. All the 
methods except SAUCIE are able to integrate the two batches effectively for the majority 
of the cell types. Scanorama, fastMNN, and SAUCIE positions a subset of ductal cells 
close to the cluster of acinar cells, whereas SCITUNA and Seurat are able to effectively 
cluster these cells correctly. Additionally, SCITUNA shows a better performance in sep-
arating alpha cells from the other cells. Methods also diverge in their placement of epsi-
lon and gamma cells. SCITUNA and Seurat position these two cell types close to each 
other though within two distinct clusters. On the other hand, Scanorama and fastMNN 
position epsilon cells far apart from gamma cells. In Scanorama’s outputs, epsilon cells 
are close to beta cells, while in fastMNN’s outputs, they are close to alpha cells. Addi-
tionally, despite the small number of macrophage and mast cells, all methods effectively 
separate these two cell types from others.

Figure 5-b shows the integration of Fluidigm C1 and inDrop3 batches. This serves 
as a challenging integration example due to the difference in cell types as well as the 
difference in the number of total cells. In terms of batch mixing, fastMNN performs 

Fig. 5 UMAP plots of the Pancreatic dataset: a CEL-Seq2 and SMART-Seq2, b Fluidigm C1 and CEL-Seq2 
batches, c multi-batch integration before and after integration using SCITUNA, Scanorama, fastMNN, Seurat, 
and SAUCIE. Each subfigure is labeled according to cell type identities in the first row and batch identities in 
the second row
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worse than the other methods where we are able to observe that the batches remain 
distinct from each other in certain parts of the UMAP plot. SCITUNA consistently 
excels in clustering cells from the same cell type. It effectively mixes batches while 
ensuring clear separation between different cell types. In particular, SCITUNA is bet-
ter at separating endothelial cells from other cell types whereas Scanorama and fast-
MNN mixes it with other cell types such as schwann, activated, and quiescent stellate 
cells. Similarly, SCITUNA succeeds in separating gamma cells from other cells, 
whereas Scanorama mixes them with alpha and epsilon cells. See Supplementary Fig-
ures 122-157 for the UMAP plots of other batch pairs.

Figure 5-c depicts the integration of multiple batches within the Pancreatic dataset. 
In terms of cell types, SCITUNA consistently demonstrates the best separation and 
compact clustering across all the cell types, preserving clear boundaries and mini-
mizing batch effects. In particular, SCITUNA generates a compact and well-defined 
cluster for gamma cells, exhibiting minimal overlap with other cell types. In contrast, 
other methods demonstrate some overlap between the clusters of neighboring cell 
types. Additionally, SCITUNA, fastMNN, and Seurat create tight and distinct groups 
for delta (or beta) cells whereas Scanorama splits these cells into two distinct groups. 
Notably, fastMNN uniquely positions endothelial cells at a significant distance from 
both activated and quiescent stellate cells. In contrast, SCITUNA, Scanorama, and 
Seurat group these cell types into closely positioned clusters. Similar to the other 
datasets, SAUCIE generally performs the worst, with diffuse clusters and significant 
overlap between cell types.

Mouse hindbrain developmental dataset results

In addition to the analysis of datasets from human, we use the Mouse hindbrain data-
set to evaluate the performance of SCITUNA compared to other alternatives. This 
dataset includes six different batches; See Supplementary Table 3 for the distribution 
of cell types in each batch. Figure 6-a depicts the aggregated evaluation scores for all 
considered methods. SCITUNA achieves the highest overall score among all meth-
ods, with a score of 0.619, followed by Seurat (0.617), Scanorama (0.587), fastMNN 
(0.587), and SAUCIE (0.574). The scores for individual metrics across all the meth-
ods are available in Supplementary File 2. In terms of biological conservation, SCI-
TUNA demonstrates the top performance with an overall score of 0.626. The other 
methods rank as follows, from highest to lowest: Seurat (0.601), Scanorama (0.600), 
fastMNN (0.566), and SAUCIE (0.500). When examining individual metrics within 

Fig. 6 Summary of the performance of SCITUNA, Scanorama, fastMNN, Seurat, and SAUCIE in terms of their 
overall performance scores for the Mouse hindbrain dataset. a Aggregated evaluation scores for 15 batch pairs 
within the Mouse hindbrain dataset. b Overall scores for integrating Batch 2 and Batch 3. c Overall scores for 
integrating Batch 2 and Batch 6. d Overall scores of multi-batch integration
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the biological conservation category, SCITUNA consistently outperforms the other 
methods. In contrast, SAUCIE exhibits significant challenges, notably over-correcting 
the dataset and losing important biological information, followed by Seurat, Scano-
rama, and fastMNN.

As it is done for other datasets, we present detailed results for two selected batch 
pairs from the Mouse hindbrain data. Figure  6-b illustrates the integration results for 
Batch 2 (5,496 cells) and Batch 3 (5,103 cells), identified as the most similar batch pair. 
SCITUNA and Seurat show close overall scores of 0.650 and 0.654, respectively. This 
is followed by fastMNN (0.606), Scanorama (0.601), and SAUCIE (0.583). In terms of 
the aggregated biological conservation score, SCITUNA outperforms the other methods 
with a score of 0.623. When considering the batch correction score, Seurat achieves a 
significantly high score of 0.74, while the second-ranked method’s score is 0.692. How-
ever, SAUCIE over-corrects the dataset notably, resulting in significant loss of biological 
information. Figure 6-c shows the integration results for Batch 2 (5,496 cells) and Batch 
6 (3,730 cells), chosen as the most dissimilar batch pair. The results show that SCITUNA 
achieves an overall score of 0.613, followed by Seurat (0.6), Scanorama (0.591), fastMNN 
(0.571), and SAUCIE (0.553). With regards to biological conservation score, SCITUNA 
outperforms the other methods and excels in most of the metrics within this category. 
The Mouse hindbrain dataset contains 53 distinct cell types, making it challenging to 
visualize individual clusters in the UMAP plots. See Supplementary Figures 158-172 for 
the UMAP plots of other batch pairs.

Figure 6-d shows the results of integrating multiple batches within the Mouse hind-
brain dataset. According to the results, SCITUNA shows a high overall score of 0.589, 
followed by Seurat (0.579), Scanorama (0.575), fastMNN (0.554) and SAUCIE (0.492). In 
terms of the biological conservation scores, SCITUNA outperforms the other method 
with a score of 0.569. The ranking of the other methods are as follows: Scanorama 
(0.559), Seurat (0.52), fastMNN (0.513), and SAUCIE (0.421). In terms of batch correc-
tion scores, Seurat demonstrates superior performance, leading by a margin of 0.05 over 
SCITUNA. However, it also faces challenges with overcorrection. This underscores the 
need for careful consideration in balancing effective batch correction with the preserva-
tion of biological variability. The UMAP plot showing the integration of multiple batches 
within the Mouse hindbrain dataset is provided in Supplementary Figure 173.

Small mouse brain (ATAC) dataset results

To assess the robustness of SCITUNA for datasets other than scRNA-seq, we also 
provide results on scATAC-seq dataset. Specifically, we focus on the Small mouse 
brain (ATAC) windows and Small mouse brain (ATAC) peaks, each consisting of data-
sets from three distinct sources. The first source is a dataset from fresh cortex tis-
sue of an adult mouse brain (P50), retrieved from 10x Genomics [33]. The second 
source includes a dataset collected from 8-week-old male C57BL/6J mice [32]. Finally, 
the third dataset consists of six samples from [34]. The results for the Small mouse 
brain (ATAC) windows are presented in the main manuscript, while the findings for 
the Small mouse brain (ATAC) peaks are available in the Supplementary. The cell type 
composition in each batch is available in Supplementary Tables 4-5. For both datasets, 
we employ the same strategy in selecting HVGs in the scRNA-seq dataset to reduce 



Page 19 of 24Houdjedj et al. BMC Bioinformatics           (2025) 26:92  

noise and sparsity. In this case, we specifically select 2,000 windows (or peaks) with 
the highest variability. Unlike scRNA-seq data, which directly reflects transcriptional 
activity and cell cycle states, ATAC-seq data primarily provides insights into regula-
tory elements and chromatin accessibility. Consequently, following [21] we exclude 
CC conservation and HVG conservation metrics from our evaluation metrics, as they 
are not relevant for assessing the biological significance of ATAC-seq data.

Figure 7-a depicts the average overall scores for the pairwise integration of the data-
sets. The results show that SCITUNA achieves the highest overall score of 0.705. The 
rankings of the other methods, from best to worst, are as follows: fastMNN (0.693), 
Seurat (0.692), SAUCIE (0.667), and Scanorama (0.602). In terms of aggregate bio-
logical conservation scores, SCITUNA also leads with a score of 0.684, followed by 
Seurat (0.643), fastMNN (0.641), Scanorama (0.621), and SAUCIE (0.567). When 
examining the metrics specifically related to batch correction, SAUCIE demonstrates 
the highest iLISI score; however, it tends to over-correct the dataset, leading to batch 
mixing that obscures biological insights. In contrast, SCITUNA and Seurat achieve 
scores that are close to each other, with marginal differences. SCITUNA stands out 
by effectively balancing batch mixing and preserving biological information. Since 
this dataset consists of only three batches, we provide the results for individual batch 
pairs in Supplementary File 2.

Figure  7-b shows the overall scores from the multiple batch integration for all 
employed methods. SCITUNA demonstrates the highest overall score of 0.663, fol-
lowed by fastMNN (0.642), Seurat (0.640), Scanorama (0.619), and SAUCIE (0.587). 
In terms of aggregated biological conservation scores, Scanorama and Seurat slightly 
outperform SCITUNA, with differences of 0.03 and 0.007, respectively. When con-
sidering the individual metrics within this category, SCITUNA shows the best per-
formance for NMI, ARI, and cLISI scores. Additionally, in terms of over-correction 
metrics, SCITUNA stands out by successfully preventing over-correction of the data-
set while still attaining the highest aggregated batch correction score. As a result, 
SCITUNA ranks at the top, followed by SAUCIE, fastMNN, Seurat, and Scanorama. 
These findings underscore SCITUNA’s capability to integrate multiple batches effec-
tively while preserving the biological relevance of the data. The UMAP plots for the 
small mouse brain windows and the small mouse brain peaks datasets are provided 
in Supplementary Figures 174-182. Detailed metrics for both datasets are available in 
Supplementary File 2.

Fig. 7 Summary of the performance of SCITUNA, Scanorama, fastMNN, Seurat, and SAUCIE in terms of 
their overall performance scores for the Small mouse brain (ATAC) windows dataset. a Aggregated evaluation 
scores for 3 batch pairs within the Small mouse brain (ATAC) windows dataset. b Overall scores of multi-batch 
integration
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Results on simulation dataset

To further evaluate the robustness of SCITUNA, we include results on a simulated 
dataset. The dataset consists of two batches with distinct cell type compositions, as 
detailed in Supplementary Table 6. To evaluate the performance of the methods, we 
exclude cell cycle conservation from our evaluation metrics. Supplementary Fig-
ure  183 presents the scores for individual metrics as well as their aggregation i.e., 
overall score, biological conservation, and batch correction. SCITUNA achieves 
the highest overall score (0.879) and biological conservation score (0.877), fol-
lowed by Scanorama (0.866, 0.875), Seurat (0.814, 0.874), fastMNN (0.812, 0.821), 
and SAUCIE (0.827, 0.755). Notably, within the biological conservation category, 
SCITUNA demonstrates a superior performance for the HVG conservation score. 
Although SAUCIE achieves the best batch correction score, followed by SCITUNA, 
it suffers from overcorrection, which leads to a loss of biological information com-
pared to SCITUNA.

Scalability
We evaluate the runtime and memory requirements of SCITUNA in comparison to 
other methods for all the employed datasets. Supplementary Figure  184 shows the 
peak memory usage and running time for pairwise integrations where average val-
ues across all pairwise integrations are reported for each dataset. We observe that 
the ordering of the methods in terms of runtime and memory usage depends sig-
nificantly on the dataset. SAUCIE takes longer than the other methods for Human 
lung and pancreas datasets whereas Seurat takes longer than the other methods for 
Mouse Hindbrain dataset. On the other hand, SCITUNA is slower than the other 
methods for scATAC-seq data indicating that the larger number of features in this 
dataset particularly affects its running time. Overall, SCITUNA is faster than some 
of the other compared methods for pairwise integrations. SCITUNA requires more 
memory than other methods for all the datasets except Mouse Hindbrain. On the 
other hand, the peak memory usage of SCITUNA is always less than 12 GBs, which 
is not considered large by current computational standards.

Similarly, Supplementary Figure  185 shows the peak memory usage and running 
time of all the methods for multi-batch integration. Seurat requires the most mem-
ory for the Human Pancreas and Mouse Hindbrain datasets, while SCITUNA has 
the highest memory requirement for the Human Lung and scATAC-seq datasets. In 
terms of runtime, SCITUNA takes longer than the other methods for all the datasets. 
We observe that the running time of SCITUNA is highly sensitive to the ordering of 
the batches in multiple batch integration. For instance, in the Human Lung dataset, 
the chosen ordering results in one batch becoming very large, negatively impacting 
both time and memory usage. We also observe that the running times of Seurat and 
SCITUNA are comparable. This is expected as SCITUNA utilizes the anchor selec-
tion procedure of Seurat which is time and memory intensive. The incompatibility 
between SCITUNA (Python) and Seurat (R) also increases the total runtime, as large 
data has to be transferred between the two environments.



Page 21 of 24Houdjedj et al. BMC Bioinformatics           (2025) 26:92  

Conclusion
Integrating single-cell data is a challenging problem that requires merging data from dif-
ferent batches, while keeping similar cells separate and preserving the local structure of 
the cells. We present SCITUNA, a novel single-cell data integration approach that com-
bines both graph-based and anchor-based techniques. SCITUNA constructs a graph 
for each batch to represent intra-batch cell similarities, and a bipartite graph to capture 
inter-batch similarities. This transforms the integration problem into a many-to-one 
matching problem, where cells from a query batch are matched with cells from a refer-
ence batch. The resulting matches are then used to transform the query cell space to the 
reference cell space. A key contribution of SCITUNA is its iterative correction strategy, 
which addresses unmatched cells by considering the intra-graphs of local neighborhoods 
to preserve the local structure within the query batch. Additionally, SCITUNA operates 
directly in the original gene expression space, which facilitates downstream analyses 
such as differential gene expression. The method also introduces a novel batch ordering 
strategy based on optimal transport cost, leading to improved integration results.

SCITUNA is evaluated against four well-known single-cell integration methods: Seu-
rat, Scanorama, fastMNN, and SAUCIE on three different scRNA-seq datasets (Human 
lung atlas, Human pancreas, and Mouse hindbrain), a scATAC-seq dataset (Small mouse 
windows/peaks), and a simulation dataset using a number of metrics previously utilized 
in a benchmark study [21]. Results demonstrate that SCITUNA outperforms state-of-
the-art methods, achieving a better aggregate overall score that balances integration 
efficiency with biological conservation. Notably, SCITUNA excels in biological conser-
vation, with significantly higher scores compared to other methods. This is crucial, as a 
common issue known as overcorrection occurs when methods overemphasize dataset 
integration at the expense of preserving the intrinsic biological structure. One of the key 
contributions of SCITUNA is the ability to perform correction in a balanced way for 
scRNA-seq, scATAC-seq, and simulation datasets that span multiple organisms.

SCITUNA utilizes an anchor selection procedure based on finding MNNs from two 
different batches. When the batches share only a small subset of cell types, many cells 
may not have a matching anchor. This limitation is partially addressed by SCITUNA’s 
integration procedure, which helps mitigate the impact of missing anchors. Because 
SCITUNA leverages Seurat’s anchor selection procedure to determine anchors between 
batches, it has a runtime comparable to Seurat for pairwise integrations. For multiple 
batch integration, SCITUNA takes longer than Seurat, as it often selects an ordering 
that results in one batch becoming particularly large. In the future, we plan to optimize 
the anchor selection process to improve runtime. On the other hand, for cases where the 
dataset contains fewer than 50,000 cells and integration accuracy is critical, SCITUNA 
remains the preferred method.

Another limitation of the current study is that SCITUNA has been tested on human 
and mouse datasets only. Future experiments will expand these analyses to include other 
organisms. Additionally, we plan to extend SCITUNA to integrate spatial single-cell 
datasets, where the inclusion of spatial location information will be a key consideration.
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MNN  Mutual nearest neighbors



Page 22 of 24Houdjedj et al. BMC Bioinformatics           (2025) 26:92 

HVGs  Highly variable genes
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