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Abstract 

Background:  Protein-protein interaction networks (PPINs) provide a comprehen-
sive view of the intricate biochemical processes that take place in living organ-
isms. In recent years, the size and information content of PPINs have grown thanks 
to techniques that allow for the functional association of proteins. However, PPINs 
are static objects that cannot fully describe the dynamics of the protein interactions; 
these dynamics are usually studied from external sources and can only be added 
to the PPIN as annotations. In contrast, the time-dependent characteristics of cellular 
processes are described in Biochemical Pathways (BP), which frame complex networks 
of chemical reactions as dynamical systems. Their analysis with numerical simulations 
allows for the study of different dynamical properties. Unfortunately, available BPs 
cover only a small portion of the interactome, and simulations are often hampered 
by the unavailability of kinetic parameters or by their computational cost. In this study, 
we explore the possibility of enriching PPINs with dynamical properties computed 
from BPs. We focus on the global dynamical property of sensitivity, which measures 
how a change in the concentration of an input molecular species influences the con-
centration of an output molecular species at the steady state of the dynamical system.

Results:  We started with the analysis of BPs via ODE simulations, which enabled us 
to compute the sensitivity associated with multiple pairs of chemical species. The 
sensitivity information was then injected into a PPIN, using public ontologies (BioGRID, 
UniPROT) to map entities at the BP level with nodes at the PPIN level. The resulting 
annotated PPIN, termed the DyPPIN (Dynamics of PPIN) dataset, was used to train 
a DGN to predict the sensitivity relationships among PPIN proteins. Our experimental 
results show that this model can predict these relationships effectively under different 
use case scenarios. Furthermore, we show that the PPIN structure (i.e., the way the PPIN 
is “wired”) is essential to infer the sensitivity, and that further annotating the PPIN nodes 
with protein sequence embeddings improves the predictive accuracy.

Conclusion:  To the best of our knowledge, the model proposed in this study 
is the first that allows performing sensitivity analysis directly on PPINs. Our findings sug-
gest that, despite the high level of abstraction, the structure of the PPIN holds enough 
information to infer dynamic properties without needing an exact model of the under-
lying processes. In addition, the designed pipeline is flexible and can be easily inte-
grated into drug design, repurposing, and personalized medicine processes.
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Introduction
Protein-protein interaction networks (PPINs) represent the set of all known Protein-
Protein Interactions (PPIs) within cells. Existing PPIs can be of different nature: physical 
interactions describe known reactions between proteins, genetic interactions describe 
correlations in the expression of genes coding for two proteins, and predicted interac-
tions are documented via correlation studies or literature mining.

PPINs are crucial for understanding cellular function; to help in this endeavor, a vari-
ety of PPI databases have been developed. These differ in the types of interactions they 
include, the level of detail provided, and their intended user base [1]. Well-established 
examples of publicly available PPIN databases include: STRING [2], BioGRID [3] and 
IntAct [4]. The integration of PPI data with other biological and biomedical information 
has been a significant research focus, enabling advances in protein interaction predic-
tion, protein complex identification, drug-disease and drug-target associations. These 
integrations often use shared ontologies to describe biochemical entities, such as Uni-
PROT for proteins [5].

Major PPI repositories depict a static snapshot of the interactome, which is instead 
inherently dynamic; while interaction networks can provide insights about a biological 
system organization, they lack explicit modeling of mechanistic insights. The dynamic 
nature of biological systems is instead modeled by Biochemical Pathways (BPs), which 
describe a series of interconnected biochemical reactions allowing the investigation of 
their dynamics. Similarly to PPIs, BPs are collected into publicly available databases, 
such as Kegg [6], Reactome [7] and BioModels [8]. The behavior of BPs can be described 
by different dynamical properties, which quantify how the concentrations of molecules 
involved in the BP change over time in response to different stimuli.

In particular, the focus of this study is on the dynamical property of sensitivity, which 
measures how the change in concentration of an input protein influences the concentra-
tion of an output protein. Sensitivity, similarly to other relevant dynamical properties, 
is often analyzed using ordinary differential equations (ODEs) or stochastic approaches 
like the Gillespie algorithm [9]. These methods, however, can be applied only if the 
kinetic parameters of all biochemical reactions are available, which is often not the case. 
Among the mentioned databases, BioModels contains the largest number of simulation-
ready BPs.

In contrast with BPs, PPINs do not contain the kinetic and quantitative information 
necessary to perform simulations. They can be seen as a high-level abstraction of all the 
BPs involving the proteins, and this abstraction allows studying interactions belong-
ing to both known and putative BPs. It is also known that these networks exhibit com-
plex structure, the analysis of which allows deriving insights about the dynamics of the 
biological dynamical system that they depict. In particular, identifying a correlation 
between the BP dynamics and the topology of a related portion of the PPIN could ena-
ble the study of sensitivity (or other dynamical properties) directly from PPINs. In turn, 
given the extensive interactome coverage of current PPINs, the scope of these analy-
ses could be widened to include PPIN portions for which a detailed description of the 
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underlying BPs is not available. With these motivations, this work investigates the pos-
sibility of inferring the sensitivity property directly at the PPIN level, rather than at the 
BP level.

The workflow of this study is shown in Fig. 1. It comprises a dataset extraction phase 
(in blue), a model training phase (in orange), and a final inference phase (in yellow) 
which pertains to the end user. In the dataset extraction phase, we started by analyzing a 
set of BPs taken from the BioModels database using ODE simulations. These simulations 
allowed us to compute the sensitivity of a large set of input/output pairs of molecular 
species. Then, we devised a mapping from BP proteins and complexes to PPIN nodes, 
which allowed us to transfer the sensitivity annotations from the BPs to the correspond-
ing portion of the PPIN. The annotated PPIN was used to create a dataset whose exam-
ples are labeled PPIN subgraphs. Each subgraph is induced by an input protein and an 
output protein, and the corresponding label indicates whether the concentration of the 
output protein is sensitive to changes in the concentration of the input protein.

Given that the examples in the dataset are subgraphs, we choose to tackle the sensitiv-
ity prediction task with a class of models specifically designed to natively process graph-
structured data, namely Deep Graph Networks (DGNs) [10]. Thus, in the second phase, 
we trained a DGN to predict the sensitivity from PPIN subgraphs. More precisely, we 
built a model that takes as input a PPIN subgraph (containing the input/output proteins 
on which sensitivity needs to be assessed), and outputs the corresponding sensitivity 
prediction. We experimentally evaluated the performances of the model to establish its 
generalization capabilities under different training and usage scenarios.

In the final inference phase, the trained DGN can be used to predict the sensitivity 
of unseen PPIN subgraphs (for example, induced by some input/output proteins under 
study). A major advantage of our approach is that, once the model is trained, the sen-
sitivity can be predicted directly at the PPIN level, bypassing the need for simulations 
or predictions at the BP level. Correspondingly, the time to issue a prediction with the 
trained model is orders of magnitude faster than running numerical simulations, making 
the developed method suitable for large scale studies.

To ground our findings in real-world scenarios, we applied our methodology to a real-
world use case to showcase its flexibility and generalizability. Specifically, we used our 

Model trainingDataset Extraction

BP simulation Sensitivity
computation

Sensitivity
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prediction
from PPINDGN Training
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Fig. 1  This work is logically divided into three phases: dataset extraction (in blue), model training (in 
orange), and sensitivity prediction (in yellow). In the first phase, we performed numerical simulations on a 
set of manually curated BPs. This process resulted in a preliminary dataset (DyBP) where BPs were annotated 
with sensitivity information. Then, we mapped the sensitivity relationships in the DyBP dataset to a PPIN, 
producing a second dataset (DyPPIN). Both datasets are made publicly available. In the second phase, 
we trained a DGN on the DyPPIN dataset to predict sensitivity relationships, assessing its performances in 
different use cases. Ultimately (third phase), the end user can use the trained DGN to predict the sensitivity 
across different portions of the PPIN. The inference phase is visually detailed in Fig. 4
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model to predict the sensitivity of diabetes-related proteins (insulin and glucagon) to 
changes in concentration of known regulatory genes. Crucially, this analysis was per-
formed by only considering the interaction network structure, and purposedly neglect-
ing gene expression annotations. The results highlight that even in this challenging 
conditions, the predictions of our model align with the biological expectations. To the 
best of our knowledge, ours is the first method that allows to predict sensitivity from 
PPINs, opening up to enhancing existing pipelines in practical applications such as 
drug-target identification, drug repurposing, and personalized medicine. Furthermore, 
the approach we present is general, and could be seamlessly applied to the prediction of 
different dynamical properties in forthcoming studies. 

Further relevant contributions of this work are the publication of two datasets describ-
ing sensitivity annotations for BPs and for protein pairs in PPINs, as well as the develop-
ment of a command-line tool to perform the sensitivity prediction on arbitrary PPIN 
subgraphs.

The paper is organized as follows: Sect.  1.1 introduces the application context of 
PPIN and an overview of machine learning methods to process and extract knowledge 
from them. We then discuss how the problem of modeling the dynamics of biological 
networks has been faced in literature (Sect. 1.1.1). Section 1.2 discusses how dynami-
cal properties of biochemical pathways can be predicted from graphs (Sect. 1.2.1) and 
introduces the DGN framework (Sect. 1.2.2). Section 2 presents the process for dataset 
extraction, DGN training, and sensitivity inference. Section 3 presents the outcomes of 
the developed methodology: the characteristics of the extracted dataset are presented 
in Sect. 3.1, while the model performances are discussed in Sect. 3.2 and 3.3. Section 4 
presents example of how the designed pipeline could be used to perform predictions, 
along with a discussion of the possible application scenarios that could take advantage of 
them. Finally, we draw our conclusion in Sect. 5.

Related works

Over the years, a substantial research effort has been put into integrating PPI data with 
other biological and biomedical information to infer new knowledge. Typical learn-
ing tasks are PPI prediction [11], protein complex identification [12], drug-disease [13] 
and drug-target association [14]. In the following, we briefly survey methods that have 
researched this integration by making use of protein sequences, structure, functional 
annotations, and interaction data, with a focus on methods that employ machine learn-
ing techniques.

Many techniques have been proposed to predict interaction leveraging protein 
metadata [15], protein 3D structure [16], and protein amino acidic sequences [17, 
18]. Since the knowledge about individual proteins can be incomplete, different 
methods have been designed to infer protein characteristics by analyzing other pro-
teins that are supposed to interact with the one of interest. For example, Zewen Xiao 
et al. [19] constructed PPIN embeddings with a DGN that uses Page Rank to capture 
higher-order relations, with the goal of predicting missing PPI arcs. Their approach 
has proven effective in dealing with noisy PPINs. Similarly, Palukuri et al. [20] devel-
oped a reinforcement learning pipeline to identify protein complexes on large PPINs, 
while Zhang and Kabuka [21] used a bag-of-words approach to learn features from 
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pairs of interacting proteins, with the goal of performing protein family annotation. 
Concurrently, some other works attempt to fuse information coming from pathways 
and the PPIN topology or to enrich pathways by adding features coming from PPIs. 
In particular, Zhang et al. [22] merged information coming from gene-gene interac-
tions, PPIs, gene expression, and pathway databases to identify relevant pathways 
connected to breast cancer. Similarly, Zhang et al. [13] used PPIs and KEGG path-
ways to identify relevant genes in breast cancer by performing random walk-based 
network reconstruction. Besides tackling learning problems different from the one 
presented in this work, all the above works consider the PPIN in a static setting. In 
contrast, our goal is to build a model that is able to predict dynamic information 
exploiting the PPIN structure.

Temporal data and PPINs

While PPI repositories concern static graphs, it is well-established that the interac-
tome is not static. Interaction networks are useful for analyzing the structure of sys-
tems or the results of their perturbation, but their lack of mechanistic insights and 
their static nature make them unsuitable for representing dynamic systems [23, 24]. 
The goal of this study, namely to learn the “dynamics function” of a biological system 
for which an exact mathematical model cannot be constructed, has been pursued by 
other works, although with methodologies that can be considered transversal and 
not directly comparable to ours. For example, Zhang et al. [25] built dynamic graphs 
from temporal gene expression data of yeast and performed protein complex identi-
fication. Similarly, Jing et al. [26] used a dynamic DGN to predict the representation 
of -omics from reverse phase protein array (RPPA) proteomics and genome-wide 
expression as features, using a PPIN derived from the STRING database. Costello 
and Martin [27] used machine learning approaches to learn the function underlying 
the dynamics of metabolite and protein concentration from metabolic time series, 
avoiding system modeling in favor of learning the dynamics directly from data. Chow 
et al. [28] faced the problem of inferring missing time points in dynamic biological 
networks via network alignment. Furthermore, Cinaglia [29] developed a method 
based on DGN to evaluate node similarities in multilayer dynamic networks, which 
supports comparative analysis between different structures of biological networks.

The discussed methodologies build a temporal graph relying on gene expression data, 
which however tend to be noisy and with changes that are not significant at the PPI level. 
Additionally, they are bound to introduce additional noise by lacking information on 
post-transcription that interleaves the gene level with the PPI level. In contrast, we pro-
pose to use a different data source (biochemical pathways) to extract dynamical infor-
mation, and train a model able to predict the dynamical behavior of a PPIN without the 
need to build a temporal graph. Our findings can also be seen as a method to enrich 
PPINs and complementary to the use of temporal gene expression data, as we will dis-
cuss in the delineation of future research in Sect. 5.
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Background

As for any other biological network, PPINs exhibit non-trivial topological features, that 
have to be taken into account when designing algorithms to process them. In general, 
biological networks are scale-free, have a high clustering coefficient, may present com-
munities, and have a short diameter despite usually having a large number of nodes. 
Some of them exhibit a hierarchical structure [30–32]. These characteristics generally 
make these networks robust to incompleteness, i.e., even in the presence of missing rela-
tions, it is possible to recover relevant information from the incomplete network. Both 
Barabási et al. [33] and Santolini and Barabási [32] pointed out that the complex struc-
ture of biological networks allows the study of dynamical properties from static graphs 
since the dynamics of the system arise from structural patterns. This finding has been 
verified at a lower level of abstraction by applying network propagation to BPs extracted 
from the Biomodels repository [8].

PPINs, on the other hand, can be seen as a high-level abstraction of a complex dynami-
cal system, whose functioning can be only partially defined by mathematical rules. Exact 
analysis of the dynamics of biological systems in this sense is only possible from a hand-
ful of well-known BPs, which are studied as isolated systems.

Dynamical properties of BPs and sensitivity analysis

BPs are a series of interconnected biochemical reactions or molecular interactions that 
occur within a cell or organism to perform a specific biological function. At their finest 
granularity, these models can describe the kinetics of chemical reactions, allowing the 
simulation of their dynamics by computing the changes in concentrations at small time 
intervals. Simulations can be performed by reconstructing Ordinary Differential Equa-
tions (ODEs) from the reactions and through any algorithm for ODEs simulation, or via 
stochastic approaches like the Gillespie algorithm [9]. The biggest repository of compu-
tational models apt to simulations is the BioModels database [8]. It contains models of 
molecular interactions, cellular processes, and whole-organism systems. These models 
are represented in a variety of formats, including the System Biology Markup Language 
(SBML) [34], CellML[35], and Synthetic Biology Open Language (SBOL) [36].

In Bove et al. [37], Podda et al. [38, 39], Fontanesi et al. [40], the authors show that it is 
possible to infer some dynamical properties of BPs by training a DGN to predict a binary 
label representing whether the property holds or not. In these studies, BPs are repre-
sented as Petri Nets [41] where places represent concentrations of molecular species 
and transitions stand for reactions. To compute the binary labels that serve as ground 
truth for the training, they simulate the ODE system up to the steady state to assess the 
robustness (specifically, α-robustness [42]), sensitivity, and monotonicity properties for 
multiple pairs of biochemical species in the BP. Starting from these findings, in this work 
we investigate the possibility of inferring a specific dynamical property, and precisely the 
dynamical property of sensitivity, by leveraging the topology of PPINs rather than that of 
BPs. Crucially, PPINs describe interactions at the protein level rather than at the molec-
ular species level; therefore, having such an inference mechanism would allow inferring 
indirect influences (i.e., among proteins having a path of length > 1 between them).
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Sensitivity, among other sensitivity analysis methods [43], determines how variations 
in input factors influence a model output. In particular, the Morris method [44] is an 
efficient global sensitivity analysis technique that allows for the computation of global 
sensitivity indices by performing a limited number of model evaluations. This property 
enables us to analyze if a single species’ initial concentration affects the output species’ 
steady-state concentration by performing a reduced number of time-consuming model 
simulations. However, due to its computational efficiency, the Morris method is mainly 
used for screening purposes, as it yields sensitivity indices that do not have a direct 
interpretation in terms of output variance decomposition [45].

The Morris method is based on the concept of Elementary Effect (EE), a measure that 
quantifies the influence exerted by a perturbation of an input factor si over the output 
of a function f. Formally, given a mathematical model with k ∈ N input factors βk of the 
form f (β1, . . . ,βk) , the EE measuring the influence of the input factor βi exerted on the 
output of the function is defined as:

where � is a perturbation applied to a single input factor βi . In the context of BPs, the 
output o = f (β1, . . . ,βk) is the steady-state concentration of a species, while the inputs 
are the initial concentration values of the remaining species. To obtain a sensitivity index 
with the Morris method, several EEs are computed with respect to different points in 
the input space; these points, along with an appropriate � , are chosen through sam-
pling strategies. In this work, we adopt a radial sampling strategy derived from a Sobol 
sequence [46], as proposed by Campolongo et al. [45].

Finally, the mean µ of the distribution of the absolute values of the EEs and the vari-
ance σ 2 of the distribution of the EEs are computed. The mean µ is interpreted as the 
overall influence that βi has on o, while the variance σ 2 estimates the effect that βi has 
on o due to interaction with other inputs. Both µ and σ 2 are compared to a threshold; 
if either exceeds the threshold, the output is declared sensitive to that input factor. A 
sensitivity of 1 indicates the output is highly influenced by the input species, while a sen-
sitivity of 0 indicates resistance to changes in that input.

Thus, sensitivity allows us to assess the importance of each parameter within the 
model domain and understand how changes in input concentrations influence the sys-
tem’s behavior. Being a global property that involves all the species concentrations in its 
computation, sensitivity suits our need to use information computed at the BP level to 
perform predictions over a PPIN. A single protein of the PPIN can be a component of 
multiple species in a BP because proteins bind to other molecules creating complexes 
formalized as distinguished entities in the BP. As described in Sect. 2.1.2, we define a 
dynamical property over a pair of proteins considering all the values of their complexes. 
Therefore, we choose a global property, that looks at all the species in the BP and not 
strictly to the input and output ones.

Deep graph networks for graph classification

A directed graph is a tuple

(1)EEi =
f (β1, . . . ,βi +�, . . . ,βk)− f (β1, . . . ,βi, . . . ,βk)

�
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where VG is the set of nodes and EG ⊆ VG ×VG is the set of directed edges. The node-
wise connectivity of a graph can be expressed with a function:

The set of reversed edges of G is defined as ĒG = {(v,u) | (u, v) ∈ EG} . Similarly, the 
function:

specifies the graph connectivity with all edge directions reversed. A subgraph 
H[G] = �VH,EH� of G is a graph such that VH ⊆ VG and EH ⊆ EG . The graphs used in 
this work are attributed, meaning that each graph node v ∈ VG is associated with a vec-
tor xv ∈ R

d of node features, with d ∈ N . We indicate with XG the set of all node feature 
vectors of G . We oftentimes use the term skeleton to refer to the structure of a graph 
without node features, i.e., considering only the sets V and E.

Although graphs are very flexible and expressive data structures, they require careful 
handling to be used as inputs to machine learning models, since they can have varying 
sizes (i.e., different number of nodes) and complex connectivity patterns. DGNs learn 
from graph data by building a vectorial representation for each node of the graph called 
embedding, which can be used to tackle classification and regression tasks on graphs. In 
this work, we focus on the graph classification task, which can be defined informally as 
learning a mapping from graphs to discrete labels. Typically, DGNs for graph classifica-
tion are composed of three main modules: message passing, pooling, and readout.

The message passing module takes an input graph and maps it to an isomorphic graph 
where each node is associated with an embedding. This mapping is achieved iteratively: 
at each iteration, the node embedding is updated as a function of itself and its neighbor-
ing embeddings. As the number of iterations increases, the receptive field of the nodes 
(i.e., the portion of other graph nodes that contribute to the embedding computation) 
grows, allowing the capture of global information from the graph [47]. Here, we focus 
on convolutional variants of message passing, which structure the iterative mapping as 
a sequence of neural layers (see, e.g., Bacciu et al. [10], Ye et al. [48] and the references 
therein).

The pooling module takes as input the node embeddings computed with message pass-
ing and aggregates them into a single vector representing the entire graph. This step 
ensures that each graph is encoded as a fixed-size embedding, regardless of its dimen-
sion and connectivity. Generally speaking, pooling can be performed using any permu-
tation-invariant function operating on multi-sets of embeddings.

The readout module takes as input the pooled graph representation and outputs a 
class prediction. In general, any standard machine learning classifier can be used; usual 
choices are logistic regression or multilayer perceptron (MLP) classifiers.

In convolutional DGN architectures, these three modules are typically differentiable, 
allowing for gradient-based learning with backpropagation.

G = �VG ,EG�,

−→
NG : VG → 2VG : −{u | (u, v) ∈ EG}.

←−
NG : VG → 2VG : −{u | (v,u) ∈ ĒG}
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Methods
Before proceeding, let us restate the goal of this study for clarity. Our aim is to build 
a machine learning model able to predict the dynamical property of sensitivity from 
PPIN subgraphs. To this end, Sect.  2.1 describes how we created a dataset to train 
the proposed model. This process involved performing simulations on a set of BPs 
and computing the sensitivity among pairs of molecular species (Sect.  2.1.1), map-
ping the sensitivity information to the PPIN (Sect. 2.1.2), and augmenting the PPIN 
subgraphs with node features (Sect. 2.1.3). Then, Sect. 2.2 describes the architecture 
of the proposed machine learning model, including how it is used during training and 
inference. Finally, Sect. 2.3 describes the setup of the experiments we performed with 
the proposed DGN.

Dataset creation

To the best of our knowledge, there currently is no public dataset about dynamical 
properties prediction over PPINs. This section explains how we obtained one for our 
purposes. As stated in Sect.  1.2.1 we focus on sensitivity, although the method we 
propose is general and can be applied seamlessly to other dynamical properties. To 
help the reader understand the workflow, we show in Fig.  2 the process to obtain a 
training data sample starting from a single BP.

BP simulations and sensitivity computation

We downloaded all 1063 manually curated models in SBML format [34] from the Bio-
models repository [8]. Each model is represented as a set of reactions, as exemplified 
in Fig. 2, box (1). We then converted the reactions set into a system of ODEs as shown 
in Fig. 2, box (2), and simulated them up to steady state using the libroadrunner 
library [49], which applies a numerical integration method to the ODE system. The 
simulation schema follows the one presented in [37] and [40]. We did not simulate 
BPs composed of assignment rules exclusively, and/or delayed differential equations, 
as they are not supported by the library. Furthermore, we discarded simulations that 
failed completely, due to numerical instability introduced by variations at too differ-
ent scales, or partially, whenever we could not obtain at least 10 EEs to compute the 
sensitivity.

After running the simulations, we obtained a set S of 842 successfully simulated 
BPs. Formally, a BP obtained after the simulations is completely specified by the tri-
plet S = �SS ,PS ,φS � where:

•	 SS is the set of molecular species interacting in the pathway. We use the letter s to 
indicate elements of SS , which can be single proteins or protein complexes;

•	 PS ⊆ SS × SS is the set of input/output molecular pairs on which the sensitiv-
ity is calculated. We use the notation (sin, sout) to denote elements of P;

•	 φS : PS → {0, 1} is a function that computes the sensitivity for a given input/
output pair using the Morris method (see Sect.  1.2.1). More specifically, 
φS (sin, sout) = 1 if sout is sensitive to sin , and 0 otherwise.
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We assembled this information into a dataset which we termed DyBP (Dynamics of 
Biochemical Pathways), defined as follows:

A portion of the DyBP dataset in tabular form is shown in Fig. 2, box (3).

DyBP =
⋃

S ∈ S

{�sin, sout ,φS (sin, sout)� | (sin, sout) ∈ PS }.
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Fig. 2  Dataset extraction process for a single BP S . (1) The BP’s model is downloaded from the Biomodels 
repository. (2) The BP is converted to ODEs and simulated to steady state multiple times. (3) The sensitivity 
is computed from the simulations’ results for each possible input/output pair in the BP. (4) The BP-related 
protein interaction graph GS is built by retrieving the BioGRID interactions among the proteins in the BP; 
note that multiple species can be mapped to the same protein (orange arrows), e.g. s1, s2 to u1 , and a single 
species can be mapped to multiple proteins, e.g. s5 to u2 and u4 . (5) The DyPPIN dataset consists of the DPs for 
each I/O species pair that are mapped to each protein-protein pair. (6) Each DyPPIN data sample induces a 
graph G in,out

S
 for the DGN training: the skeleton conveys the PPIN subgraph topology, while the node features 

X
in,out
S

 represent whether the node is the input uin or the output uout . Optionally, the node features can be 
augmented with protein embeddings from UniProt (7). The graphs G in,out

S
 and their sensitivity labels yin,out

S
 are 

used as input and the target variables of our graph classifier
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Mapping of BP information onto the BioGRID PPIN

The next step entailed mapping the sensitivity information contained in the DyBP data-
set to the interactome. This mapping is not trivial, since species in a BP can be complexes 
containing multiple proteins, and the same protein can be a part of multiple complexes. 
After taking into consideration different PPI databases (IntACT, STRING, BioGRID), 
we chose BioGRID as the reference interactome since it contains the largest number of 
curated physical interactions involving BP proteins. We consider all the PPIs in BioGRID 
independently from the organism they refer to.

Let B = �VB ,EB� be the graph representing the BioGRID interactome, where nodes 
u ∈ VB are proteins and edges EB ⊆ VB ×VB are PPIs. The connection between BPs 
and PPINs stems from the fact that BP species s ∈ S are essentially individual proteins 
or protein complexes that we represent as sets of proteins, some of which belong to the 
interactome,1 i.e., s ⊂ VB . Having made this crucial observation, for each BP S in the 
DyBP dataset we induce a BioGRID subgraph Gin,out

S
= �VS ,ES ,X in,out

S
� where:

•	 The set of nodes is composed of all the interactome proteins belonging to at least one 
molecular species in SS . More formally, VS = {u ∈ VB | ∃s ∈ SS : u ∈ s}.

	 As a further restriction, we filtered out proteins that are not associated with a Uni-
PROT identifier,2

•	 The set of edges is composed of all the PPIs in the BioGRID graph having proteins in 
VS as vertices,

•	 X
in,out
S

 is the node features set that is constructed depending on the choice of an 
input protein uin and an output protein uout (see Sect. 2.1.3).

We remark that even though the notation does not explicitly specify it, GS is to be con-
sidered as a proper subgraph of the BioGRID PPIN, in the sense that VS ⊆ VB and 
ES ⊆ EB . An example of mapping a BPs to the corresponding BioGRID subgraphs is 
shown in Fig. 2, box (4). In practical applications, this mapping could produce a discon-
nected BioGRID subgraph, as there is no guarantee that nodes in VS all share a direct 
interaction. To avoid this issue, we complete VS and ES by adding all the proteins and 
interactions in B that belong to a path of minimal length between any pair of connected 
components to restore full connectivity. Lastly, we associate the sensitivity information 
for any two pairs of proteins in the subgraph with the following rule:

In other words, if at least one species including protein uin influences at least another 
species including protein uout at the BP level we claim the same influence at the PPIN 
level.

yin,out
S

=
{

1 if ∃ (si, sj) ∈ PS ,uin ∈ si,uout ∈ sj : φS (si, sj) = 1,
0 otherwise.

1  Technically, a species can include other molecules, but we do not consider them since we are interested in proteins 
only.
2  UniPROT was chosen since it is the most widely used ontology for proteins in PPI databases.
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During the mapping process, several BPs were mapped into trivial BioGRID subgraphs 
containing a single node or a completely disconnected set of nodes. This was caused by 
different reasons, such as lack of corresponding PPIs or due to protein identifiers miss-
ing in the SBML model. To prevent adding trivial subgraphs to the DyPPIN dataset, we 
discarded all BPs with trivial structure as well as those who mapped to trivial BioGRID 
subgraphs; as a consequence, we were able to extract BioGRID subgraphs from 279 BPs 
out of the original 842.

Having obtained the subgraphs and their respective sensitivity indicators, we assem-
bled this information to create a dataset, which we termed DyPPIN (Dynamics of Pro-
tein-Protein Interaction Networks), as follows:

A subset of the DyPPIN dataset in tabular form is displayed in Fig. 2, box (5). Ultimately, 
the DyPPIN dataset contains 17169 training pairs.

Adding node features to subgraphs

Before being processed by the DGN, each BioGRID subgraph in the DyPPIN dataset is 
augmented by adding a vector of node features. More precisely, given a subgraph Gin,out

S
 

as defined in Sect. 2.1.2, we associate each node v to a vector xv ∈ R
d = [I;O; x̃v] , with 

[;] indicating concatenation, where:

Basically, the first two components of xv indicate whether the current node is an input 
protein, an output protein, or neither. We call these two components the I/O features. 
The remaining component x̃v is not fixed, but varies depending on the experiments. Spe-
cifically, it can be:

•	 Empty, to let the DGN learn from the structure alone and assess the binding between 
graph structure and sensitivity;

•	 a Protein sequence embedding predicted by the protein language model ProtT5, as 
downloaded from UniProt [17]. These embeddings are produced by tokenizing pro-
tein sequences and applying positional encoding. The sequences are then passed 
through a transformer model to generate context-aware embeddings from the last 
hidden state of the transformer’s attention stack. We compress the embeddings via 
principal component analysis from the original dimension of 1024 to 128. The opti-
mal number of components has been selected by taking the kneading point of the 
explained variance ratio curve [50];

•	 a One-hot encoding of the possible protein identifiers in DyPPIN , (1029 in total). 
These features will serve as “protein information baseline”: as they are just an identi-
fier, they are useful to check whether we actually need the rich information stored in 
the protein embedding.

Finally, we arrange all the node feature vectors into a set X in,out
S

 to be used by the DGN 
during training or inference. An example of BioGRID subgraph encoded with the 

DyPPIN = {�Gin,out
S

, yin,out
S

� | (uin,uout) ∈ (VS ×VS )}.

I =
{

1 if v = uin
0 otherwise,

O =
{

1 if v = uout
0 otherwise.
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corresponding node features (with empty x̃v ) is shown in Fig. 2, box (6). Similarly, Fig. 2, box 
(7) shows the same graph but with x̃v containing ProtT5 embeddings taken from UniProt.

DGN architecture

In this section, we present the details of the DGN architecture used to learn sensitivity from 
PPINs. We refer the reader back to Sect. 1.2.2 for a general understanding of the main DGN 
concepts. At a high level, the DGN receives and processes a DyPPIN BioGRID subgraph 
GS , encoded as described in Sect. 2.1.3, to produce a sensitivity prediction ŷS ∈ (0, 1) as 
output. Notice that we drop the in, out superscript for conciseness. The overall architec-
ture is shown in Fig. 3; below, we describe its main modules (message passing, pooling, and 
readout) in detail.

Message passing module The message passing module takes as input a graph G , and spe-
cifically its node features XG and the connectivity functions 

−→
NG and 

←−
NG , giving as output a 

graph isomorphic to G where each node v is associated to an embedding hLv ∈ R
h , where 

h ∈ N is the embedding dimension. In practice, the message passing module maps the input 
to the output with a stack of L subsequent graph convolutional layers. The computation is 
initialized with h0v = xv , i.e., by setting the node features as initial embeddings. Then, each 
intermediate graph convolutional layer processes its input as follows (for ℓ ≥ 1):

In Eq. 2, the current node embedding hℓ−1
v  is updated as a function of itself and a per-

mutation-invariant aggregation (denoted with 
⊕

 ) of its incoming neighbors, as selected 
through 

−→
NG . This computation is parameterized by learnable weights 

−→
W 1,

−→
W 2 ∈ R

h×h . 
Analogously, Eq. 3 updates the current node embedding as a function of itself and its 
outgoing neighbors, as selected through 

←−
NG . This computation is parameterized by a dif-

ferent set of learnable weights 
←−
W 1,

←−
W 2 ∈ R

h×h . Finally, in Eq.  4, the two intermediate 

(2)
−→
h

ℓ
v =

−→
W 1h

ℓ−1
v +−→

W 2

⊕

v′∈−→NG(v)

h
ℓ−1
v′ ,

(3)
←−
h

ℓ
v =

←−
W 1h

ℓ−1
v +←−

W 2

⊕

v′∈←−
NG(v)

h
ℓ−1
v′ ,

(4)h
ℓ
v = α

−→
h

ℓ
v + (1− α)

←−
h

ℓ
v .

Fig. 3  The proposed DGN architecture for sensitivity prediction. Given a PPIN subgraph GS , its node features 

XG and connectivity functions 
−→
NG and 

←−
NG are provided as input to the message passing module, which 

computes the node embeddings by applying L graph convolutional layers to the node features. After each 
convolutional layer, the embeddings are passed through a ReLU non-linearity and a dropout layer. Then, 
the final embeddings are aggregated into a single graph representation via the pooling module. Lastly, the 
readout module takes in the aggregated graph representation and computes a sensitivity prediction ŷS
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embeddings are combined into a final embedding as a convex combination with coef-
ficient α . This implementation combines ideas from previous contributions in the field 
of DGNs [51, 52] which are particularly suited to our task. Specifically, learning the con-
tribution of incoming and outgoing neighbors with separate sets of weights reflects the 
fact that in a PPIN, a node can play the role of source (resp. target) of the interaction. 
Thus, having distinct sets of weights creates two distinct flows of information depend-
ing on the role taken by each node, where the “strength” of each flow is modulated by 
α . Also, remark that the weights are adjusted by the network during the learning phase 
in order to better approximate the relationship between the input PPINs and the output 
sensitivity.

After L graph convolutional layers, the resulting embeddings hLv are further passed 
into an element-wise ReLU non-linearity and a final Dropout layer [53]. Dropout is a 
model regularization technique that deactivates neurons with a certain probability dur-
ing training, encouraging the neural network to learn more robust features.

The message passing module includes several hyperparameters that have been tuned 
during model selection: the number of graph convolutional layers L, the embedding 
dimension h, and the convex combination coefficient α . We refer to Sect. 2.3.2 for an in-
depth discussion.

Pooling module The pooling module takes as input the node embeddings at the last 
message passing layer and aggregates them into a single vector representing the entire 
graph. This step ensures that each graph is encoded as a fixed-size embedding, regard-
less of its dimension and connectivity. In this work, we only consider add pooling, which 
aggregates using the sum. Therefore, the pooling module produces a graph representa-
tion hg ∈ R

h by aggregating the node embeddings at layer L as follows:

Readout module The readout module takes as input the pooled graph representation 
and outputs a sensitivity prediction ŷS ∈ (0, 1) . In this work, the readout module is a 
simple logistic regression classifier:

where w ∈ R
h and b ∈ R are learnable weights, and sigm is the sigmoid function.

Training and inference

During training, the DGN receives mini-batches B ⊂ DyPPIN of training samples, 
where each training sample is a tuple 〈GS , yS 〉 . The graph GS is processed by the DGN 
to obtain a prediction ŷS , which is compared to the true sensitivity yS through a binary 
cross entropy function as follows:

The DGN parameters are then adjusted to reduce the average loss of the batch using sto-
chastic gradient descent.

(5)hG =
∑

v∈VS

h
L
v .

(6)ŷS = sigm(wT
hG + b),

(7)L(yS , ŷS ) = 1

|B|
∑

�GS ,yS �∈B
yS log(ŷS )+ (1− yS ) log(1− ŷS ).
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Once the DGN has been trained, it can be used for inference, i.e., to predict BioGRID 
subgraphs that were not seen during training, as shown in Fig. 4. In this case, a user only 
needs to select a portion of interest in the BioGRID interactome, as shown in box (1); 
choose an input and output protein whose sensitivity needs to be predicted, as depicted 
in box (2); and finally feed the corresponding subgraph GS to the DGN, as shown in 
box (3). We provide a command line tool that implements this inference pipeline in the 
attached code repository.

Experimental design and performance evaluation

When dealing with any prediction task over groups of proteins, it is crucial to properly 
split the available data to avoid unrealistic performance estimations [54]. As proteins 
form a densely connected graph due the presence of hubs, splitting nodes and edges to 
form disjoint sets is infeasible, especially for a dataset covering a small part of the inter-
actome like ours (see Sect. 3.1). Rather, we can quantify the expected data leakage and 
avoid overestimating graph models performances by designing proper validation strate-
gies [55, 56]. We defined different data splitting strategies to evaluate performances in 
three different use cases (UCs). The UCs reflect how the test graphs overlap with those 
in the training set. 

UC1	� Unknown input/output pair. In this case, the data samples of DyPPIN were 
split with a standard random sampling. Therefore, the same PPIN subgraph can 
be present both in the training and test sets but with different input/output pairs. 
This corresponds to the scenario where the user wants to predict the sensitivi-
ties of new input/output pairs within a group of proteins that could be in BPs in 
DyBP.

UC2	� Unknown protein. In this case, we performed a k-fold split over the proteins 
in DyPPIN, inducing a split over the data samples. Basically, we ensure that 
the held out subset of proteins in the test set does not appear in any training 
pair (either as input or output). This corresponds to the scenario where the user 
wants to predict the sensitivity for proteins that are not in DyPPIN. Notice that 
this setup is more challenging than UC1 since a model is trained without all the 
sensitivity information about some proteins.

UC3	� Unknown subgraph. In this case, we performed a k-fold split over S , induc-
ing a split of the data samples with respect to their skeletons. This corresponds 

(1) PPIN subgraph selection (2) uin and uout selection (3) Sensitivity prediction via DGN

0 0

0 0

0 1

0 0

0 0

1 0

DGN

uout is sensitive to uin

uout is not sensitive to uin
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u2

u3

u4

u5

u6

u7 u8

u9
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u11
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u13
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u15u16u17
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Fig. 4  An example of how sensitivity is predicted on a trained DGN. The user has to (1) select the subgraph 
containing the proteins of interest, here marked in yellow, (2) the input protein uin to perturb, and the output 
protein uout on which the sensitivity needs to be assessed. (3) The DGN model processes the induced graph 
and predicts whether uout is sensitive to uin
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to the scenario where the user wants to assess the sensitivity within a group of 
proteins that induce a totally new PPIN subgraph. This is the most challenging 
scenario, because the model needs to generalize over unobserved topologies 
containing mostly unobserved nodes.

We remark that the inference tool allows the user to evaluate in which UC a prediction 
falls. This is done by computing the overlap between the imputed proteins and the pro-
teins in DyPPIN on which the DGN model has been trained. Notice that UC2 and UC3 
can be seen as information ablation tests with respect to the base case UC1.

Performance metrics

Performances have been assessed using accuracy, F1-score, Area Under the Receiving 
Operator Curve (AUROC), and Matthews Correlation Coefficient (MCC). In particular, 
the accuracy defined as:

where TP, TN, FP, FN stand for true positives, true negatives, false positives, and false 
negatives, respectively. Accuracy was chosen since it is a standard metric for classifica-
tion tasks. However, accuracy is less interpretable when class imbalance is at play (our 
case). Therefore, we computed additional metrics that are more informative under class 
imbalance. Specifically, the F1-score is computed as:

which corresponds to the geometric mean between precision (i.e., positive predictive 
value), and recall (i.e., sensitivity). F1-score is more advantageous since it is imbalance-
aware (it is 0 in case of a null classifier that only predicts the majority class). The AUROC 
measures the probability that the model ranks a randomly chosen sensitive example 
higher than a randomly chosen non-sensitive example [57]. AUROC ranges from 0 to 1, 
and a null classifier obtains an AUROC of 0.5. However, AUROC can provide a decep-
tively high score when the classifier is biased towards the majority class. Lastly, we com-
puted the MCC, defined as:

Essentially, the MCC measures how much the predictions correlate with the true sen-
sitivity labels, ranging from −1 (perfect negative correlation) to 1 (perfect positive cor-
relation). An MCC score of 0 indicates that the predictions are not correlated with the 
targets. It is worth noting that MCC is imbalance-agnostic and symmetric (i.e., it treats 
the positive and negative class equally) [58, 59].

Model selection and evaluation

We evaluate the model through a grouped 4-fold cross-validation, stratified by the 
sample labels yS . Specifically, we split the DyPPIN dataset into four subsets (or 

ACC = TP+ TN

TP+ TN + FP+ FN
,

F1 = 2TP

2TP+ FP+ FN
,

MCC = TPTN − FP FN√
(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)

.
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folds). In turn, one of the four folds is held out for testing, while the remaining three 
folds are further partitioned into a training set (used to fit the model parameters) 
and a validation set (used to tune the model hyperparameters). We use grouping for 
UC2 (resp. UC3) to build the folds so that all data samples for a protein (resp. BP) 
do appear either in the training, validation, or test set, hence preventing information 
leakage and ensuring that the model performances are properly evaluated.

Since the number of samples per BP is highly variable across the DyPPIN dataset (a 
characteristic further analyzed in Sect. 3.1), we carefully selected the optimal number 
of groups in order to have a coherent number of samples for training, validation, and 
test set across the different folds. The groups are also stratified with respect to the 
sensitivity labels to homogenize the distribution of the classes across the folds.

The best DGN hyperparameters of the DGN were chosen using grid search. Specifi-
cally, we first defined a grid of possible values for each hyperparameter, and then we 
exhaustively evaluated all combinations of from the grid on the validation set, choos-
ing the set of hyperparameters which scored the highest F1. Tuned hyperparameters 
include:

•	 Number of layers L, chosen in the set {1, . . . , 8};
•	 Embedding dimension h, chosen in the set {32, 64, 128, 256, 512, 1024};
•	 Convex combination coefficient α , chosen in the set {1.0, 0.9, 0.5};
•	 Learning rate, chosen in {1e − 3, 5e − 4, 1e − 4, 1e − 5};
•	 L2 regularization coefficient � , chosen in {1e − 1, 1e − 2, 1e − 3, 1e − 4, 1e − 5, 0};
•	 Units dropout percentage, chosen in {0, 0.25, 0.5};
•	 Neighborhood aggregation operator 

⊕

 , chosen between the sum and mean oper-
ators.

Baseline models Since we are interested in investigating whether the PPIN structure 
plays a role in inferring sensitivity, we compared the proposed architecture to a base-
line where the graph connectivity is discarded. Basically, we kept the same architec-
ture shown in Fig. 3, but we replaced the message passing module with a multilayer 
perceptron with one hidden layer, which is applied to the node features, similarly 
to the DeepSets architecture [60]. In practice, the graph embedding is computed as 
follows:

and fed to the readout module, similarly to the proposed model. Basically, the role of the 
baseline is to check if the graph structure is needed to accomplish the task, following the 
current best practices for the evaluation of graph classifiers [61].

We also included a “null” baseline which always predicts the majority class, to check 
whether the model provides any meaningful learning beyond the trivial prediction of 
the most frequent class.

Furthermore, we performed grid searches using other graph convolutional architec-
tures, GCN [62] and GIN [63], whose results are provided as supplementary material.

(8)hG =
∑

v∈VG

MLP(x0v),
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Other details about model training We use weighted batch sampling to mitigate the 
bias induced by the imbalance in the distribution of sensitivity indicators (see Sect. 3.1). 
The training was performed using the Adam optimizer [64]; we use early stopping with 
100 epochs patience and tolerance 10−6 . The model has been implemented in PyTorch 
[65], PyTorch Lightning [66], and PyTorch Geometric [67] for the model development, 
Ray Tune [68] and Wandb [69] for the grid search management. Experiments were run 
on a single machine with two NVIDIA® A30 GPUs with 24 GB of dedicated memory, 
and two 28-core Intel® Xeon® Gold 6238R CPU @ 2.20GHz, and 250 GB of RAM. Due 
to early stopping, training times show a great variance depending on the UC and the 
node features. An epoch took 6 s on average. The final configurations took 12 to 26 min 
in UC3, while in UC1 and UC2 they range from 17 to 248 min. Usage of node features 
led to earlier stopping in all UCs (2 to 10 times less epochs), at the cost of a larger mem-
ory consumption. In terms of scalability, we remark that our method works on small 
PPIN subgraphs, each of which covers a small interactome portion of interest. Therefore, 
we reasonably expect that the training times will scale proportionally with the number 
of training subgraphs, thus remaining into feasible ranges. Details about training times 
can be found in the model selection notebook in the code repository (see the “Availabil-
ity of data and materials” section).

Results and discussion
In this section, we present a comprehensive analysis of the DyPPIN dataset and evalu-
ate the performance of the proposed model on various use cases. In Sect. 3.1, we analyze 
the data to give insights into its structure and characteristics, which is crucial for under-
standing the context of our experiments. In Sect.  3.2, we discuss the results obtained 
from different model configurations and their performance across different experimen-
tal setups. Finally, in Sect. 3.3, we perform an error analysis to identify patterns in the 
misclassified samples and understand the limitations of our models.

Fig. 5  Statistics about the 279 PPIN subgraphs in the dataset. The graphs are generally small, i.e. they have 
9 nodes and 23 edges on average. The average and maximum path length among any two nodes in the 
graphs are short ( ∼1.5 and ∼3), which is an expected property of PPINs. The clustering coefficient has a mean 
of 0.5, but there is a not negligible part of strongly connected and loosely connected graphs
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Dataset analysis

The DyPPIN dataset features 17169 samples coming from 279 different BPs. The data-
set is imbalanced towards the non-sensitivity class (i.e., yS = 0 ), which covers 67.6% 
of the sample labels. The class distribution is not uniform for each BP. Figure 5 shows a 
high variance of the number of nodes, edges, maximum path length, and clustering coef-
ficient.3 In particular, it can be noticed that most of the graphs are quite small, having a 
number of nodes between 4 and 10 and between 4 and 25 edges. Observing the cluster-
ing coefficient, the average degree, and the maximum path length reveals that in general, 
every node is connected to half of the nodes in the network. Therefore, the topological 
features of the graphs in DyPPIN are aligned with those of the typical biological net-
works discussed in Sect.  1.1.1. This is crucial since our desire is to learn from graphs 
matching the generic PPIN topology.

Since we compute the sensitivity between any pair of species in a BP, the number 
of data samples grows exponentially with the number of species. Therefore, BP hav-
ing larger graphs will also have many more samples (see Fig.  6a), which could cause 
the model to overfit the larger graphs. Also, proteins belonging to larger graphs will be 
involved in more I/O pairs, causing further imbalance. From Fig. 6b we can observe that 
the number of data samples for each protein follows a power law distribution.

The DyPPIN dataset encompasses 1009 different proteins, covering 1.14% of all the 
proteins in the BioGRID PPIN. Similarly, the PPIs among them (2826) cover only 0.13% 
of the BioGRID PPIN. This is not surprising as we know that the set of BPs in the Bio-
Models repository has minimal coverage. By considering the interactions of the sole pro-
teins in the dataset, we cover 5.35% of the reactions involving them. Clearly, this implies 
that the set of subgraphs used in this study mostly covers well-studied BPs, which could 
be perceived as a bias. However, it is crucial to remark that our approach is topology-
based, and that our experimental setup is designed to explicitly stress-test the model to 
predict unseen interactome regions (as detailed in Sect.  3.2), which may as well con-
tain less-studied BPs. Therefore, as long as the PPIN subgraphs are extracted with the 
methodology detailed in Sect. 2.1, whether the BP is less-studied does not constitute a 
concern. Despite the small coverage, most of the proteins in the DyPPIN dataset (97.5%) 
are present in more than one BP, as shown in Fig. 6(c). This is a much-desired property 

(a) Amount of BP by number of
data samples.

(b) Amount of proteins by num-
ber of data samples

(c) Amount of BP in which a
protein is present.

Fig. 6  Distribution of proteins and BP with respect to the amount of data samples. For example, the highest 
bar of Fig. 6(c) can be interpreted as: “there are 40 proteins that are present in 5 different BPs”. Note that these 5 
BP can be different for each protein, so we are referring to up to 800 different BPs

3  A measure of how likely it is that nodes form tightly knit groups [70]
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since it will allow us to verify whether we can learn from some BPs in which the protein 
interacts and infer the sensitivity of new ones.

Model performances

In this section, we review the results obtained for each use case presented in Sect. 2.3. 
For clarity and conciseness, we focus the discussion of the results on the MCC metric; 
however, similar considerations can be extended to the other reported metrics without 
loss of generality.

UC1: Unknown input/output pair. We remind the reader that in this use case, our 
aim is to test to what extent the models generalize to unseen input/output pairs (which 
however belong to proteins that are seen during training). The results of this experiment 
are reported in Table 1. We notice that the vanilla DeepSets variant predicts essentially 
at random, as indicated by the MCC metric which is close to 0 (indicating that its pre-
dictions are not correlated with the true sensitivities). This suggests that when both the 
graph structure and the protein embeddings are not used, the resulting model is unable 
to generalize.

When protein embeddings are added to the node features, the resulting model starts 
to properly generalize, as indicated by the significant 7.6x improvement in the MCC 
metric obtained by the DeepSets+emb variant with respect to the vanilla variant. The 
next leap in performance is achieved by the vanilla DGN variant, which improves the 
MCC metric upon the DeepSets+emb variant by a further 32% despite not using addi-
tional protein embeddings as node features. This suggests that in this task, the graph 
structure (i.e., the way the PPIN subgraph is “wired”) has a stronger impact than the 
protein embeddings on performances, and that DGN are able to exploit it to improve 
predictions. Lastly, adding protein embeddings to the DGN nodes further improves per-
formances, as demonstrated by the 23% MCC improvement achieved by the DGN+emb 
variant over the vanilla DGN variant. Overall, these results align to our initial hypoth-
esis that the combination of the graph structure and the protein embeddings (which also 
encode structural and sequential patterns) provide the strongest signal to learn the sen-
sitivity prediction task.

UC2: Unknown protein. This use case tests whether the models generalize to input/
output pairs containing unseen proteins. The results of the experiments are reported 
in Table 2. As explained in Sect. 2.3, this is a more challenging setup than UC1, where 
we expected a slight decrease in performance. From the comparison, we notice that 

Table 1  Average test scores (± standard deviation) obtained by the different models in the random 
hold out use case (UC1). The suffix +emb indicates that protein sequence embeddings were 
concatenated to the I/O features. Best results are boldfaced 

Model MCC F1 ACC​ AUROC

Null .000±.000 .000±.000 .676±.000 .500±.000

DeepSets .062±.043 .284±.140 .574±.167 .650±.004

DeepSets+emb .472±.006 .647±.004 .764±.004 .817±.002

DGN .625±.009 .750±.006 .830±.009 .907±.004

DGN+emb .767±.004 .843±.002 .897±.003 .957±.002
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by adding protein embeddings the DeepSets+emb variant scores a significant 19.8x 
improvement (with respect to the vanilla DeepSets variant) in the MCC metric, indi-
cating that protein embeddings are beneficial to generalization. As regards DGNs, we 
observe that the vanilla variant does not improve upon the DeepSets+emb variant. 
However, the DGN+emb variant, which combines protein embeddings with the graph 
structure, is able to improve in the MCC metric by 23% over the DeepSets+emb variant. 
This result indicates that, even when transitioning to a more challenging task, using the 
graph structure together with informative node embeddings allows the resulting model 
to generalize, and makes it applicable to perform predictions on proteins whose behav-
ior cannot be studied at the BP level.

UC3: Unknown subgraph. In our last use case, we test whether the models are still 
able to generalize to novel PPIN subgraphs. The results of this experiment are reported 
in Table  3. As mentioned in Sect.  2.3, this is the most challenging scenario, which 
requires the models to be able to generalize to possibly unseen nodes and topologies. In 
this case, DeepSets variants, which do not exploit the graph structure, are unable to gen-
eralize even with protein embeddings. In fact, they achieve an MCC close to 0 or display 
high variance across the test folds (in particular the DeepSets+emb variant). In contrast, 
even in this challenging setup, the structure-aware DGN variants are able to generalize 
to unseen topologies to some extent: in particular, the DGN+emb (resp. DGN) improves 
the MCC metric by up to 2.7x (resp. 2.2x) with respect to the DeepSets+emb variant.

Several insights can be drawn from these results. First of all, the fact that in this chal-
lenging case DeepSets+emb is unable to generalize, while the DGN variants show better 
performances, suggests that the graph structure contains crucial information for gener-
alization, and that DGN variants are able to exploit it. Moreover, on the basis of the poor 

Table 2  Average test scores (± standard deviation) obtained by the different models in the protein 
hold out use case (UC2). The suffix +emb indicates that protein sequence embeddings were 
concatenated to the I/O features. Best results are boldfaced 

Model MCC F1 ACC​ AUROC

Null .000±.000 .000±.000 .680±.024 .500±.000

DeepSets .021±.036 .218±.200 .572±.169 .560±.142

DeepSets+emb .415±.031 .605±.038 .741±.013 .783±.033

DGN .404±.077 .604±.043 .728±.052 .791±.038

DGN+emb .512±.040 .667±.032 .788±.019 .844±.025

Table 3  Average test scores (± standard deviation) obtained by the different models in the 
pathway hold out use case (UC3). The suffix +emb indicates that protein sequence embeddings 
were concatenated to the I/O features. Best results are boldfaced 

Model MCC F1 ACC​ AUROC

Null .000±.000 .000±.000 .678±.014 .500±.000

DeepSets .048±.037 .259±.169 .565±.174 .634±.037

DeepSets+emb .104±.094 .320±.186 .637±.047 .554±.087

DGN .230±.074 .528±.029 .581±.098 .631±.086

DGN+emb .277±.058 .515±.040 .682±.030 .657±.041
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performances of DeepSets+emb in this use case, we can conjecture why it performed 
reasonably in UC1 and UC2, where only input/output pairs and individual proteins, 
respectively, were held out from the training set. Our intuition is that in those cases 
DeepSets learns the correlation between the sensitivity label and the group of proteins, 
so that when either a new input/output pair for the same group or the same group with a 
new protein are considered, the learned correlation can be exploited. However, learning 
this correlation alone is not enough when, as in UC3, the data samples come from differ-
ent BPs than those used during training. Indeed, different BPs include (mostly) different 
groups of proteins, making the correlation learned by DeepSets useless. In contrast, the 
proposed DGN learns useful signals from the graph structure, which allows it to gen-
eralize even in more challenging use cases, and exploits the protein embeddings as a 
means to distinguish among the different proteins. Indeed, as we will show in Sect. 3.2.1, 
the DGN is able to achieve similar levels of generalization in all use cases even when 
using orthogonal (i.e., one-hot) protein identifiers instead of protein embeddings.

Finally, it is worth remarking that the generalization signals shown by DGN are par-
ticularly relevant by considering the small coverage of our dataset compared to the 
entire interactome. As discussed in Sect. 3.1, our dataset includes only 1.14% of the pro-
teins and 0.14% of the interactions in BioGRID. Hence, the whole interactome very likely 
contains a large variety of topologies not included in the dataset and on which it was not 
possible to train the DGN. We anticipate that performances are likely to increase further 
once a larger coverage of the interactome will be obtained, thus increasing the represen-
tation of different topologies in the dataset.

Performances with one‑hot

In this additional experiment, we trained the DGN model by replacing the protein 
embeddings with one-hot encoded identifiers. This test has been motivated by the 
improvements we obtained by adding the protein embeddings as a feature. In particu-
lar, we wanted to investigate whether the model benefited from using the structural 
information encoded by the embeddings or it used them as protein identifiers. Thus, we 
resorted to one-hot encodings, which are simple identifiers that do not contain struc-
tural information. As reported in Table 4, the performances are always on par with the 
ones obtained with the protein embeddings. Furthermore, we observed a faster training 
convergence (in terms of number of epochs), which suggests that the one-hot features 
bring information that is easier for the model to learn from. This outcome indicates that 

Table 4  Average text scores (± standard deviation) of DeepSets and DGN variants when using one-
hot encodings as protein identifiers

Model UC MCC F1 ACC​ AUROC

DeepSets 1 .498±.009 .661±.008 .778±.007 .834±.003

DGN 1 .764±.008 .842±.005 .896±.004 .952±.001

DeepSets 2 .427±.032 .595±.047 .759±.015 .794±.026

DGN 2 .543±.043 .690±.039 .801±.018 .851±.014

DeepSets 3 .146±.076 .284±.107 .677±.028 .622±.042

DGN 3 .253±.058 .486±.047 .677±.027 .651±.049
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the model mostly needs to distinguish proteins from each other to obtain high perfor-
mance. Therefore, we conclude that the largest impact on the performances is brought 
forth by the way the subgraphs are “wired”, i.e., by their topology, which the proposed 
DGN could exploit successfully.

Besides these considerations, the one-hot features serve as a probing tool rather than 
a modeling solution as they are not generalizable to new proteins. In fact, the one-hot 
vector can only encode as many proteins as known at training time, and any unknown 
protein at test time would require non-trivial adjustments.

Error analysis

To complement the evaluation experiments, we conducted an analysis to uncover pat-
terns in misclassified samples. This analysis serves the purpose of understanding what 
is the contribution of different graph topological features to the sensitivity predictions. 
To achieve this objective, we stratified the performance metrics with respect to four dif-
ferent characteristics of the input graphs: number of nodes, number of edges, average 
clustering coefficient, length of the shortest path from the input protein to the output 
protein, and backward (following the graph connectivity). In this section, we pick the 
MCC measure for the discussion, but the observations hold for all the other perfor-
mance measures adopted in this study.

We identified a general trend that holds regardless of the UC or characteristics under 
study: predictions are more accurate with moderate to high clustering coefficient (CC). 
This is expected, since dynamical properties are typically inferable on graphs that exhibit 
some complex structure [32], so it is harder for the model to make accurate predictions 
at the two edges of the connectivity spectrum, i.e., when the CC is close to 1 (strongly 
connected graph) or to 0 (weakly connected graph). Figures  7a–c show that perfor-
mances are lower for graphs with a CC that tends to 0, and decreases slightly when 
reaching 1. When using protein embeddings, this trend gets smoothed for large CC, 
because even when the graph is fully connected the model can discern different pro-
teins, hence distinguishing two graphs having an identical skeleton. For UC3 (Fig. 7c), 
MCC score shows a high variance between folds for lower MCC, but the trend can be 
observed looking at the shaded area representing the standard deviation, which gets 
shrunk for medium to high CC values.

Concerning the distance from the input to the output nodes, we found that perfor-
mances correlate negatively in both directions, meaning that F1 decreases as the input–
output distance increases. This tendency, shown visually in Figs. 7(d–f), holds across the 
different use cases and it is slightly accentuated when the model uses only the I/O node 
features. Note that a distance of 4 in a PPIN is close to the network diameter, so it can 
be considered “long” in this context. The model performances up to this distance are 
consistently above the baseline, so we can conclude that the DGN is able to learn long-
distance relationships in PPINs.

As regards graph size, we found that performances with respect to the number of 
nodes (Figs. 7(g–i) follow trends similar with the I/O distance, as larger graphs will have 
more distant I/O pairs. Additionally, we can observe worse performances with smaller 
graphs, which are likely to have trivial structure. A similar behavior can be observed 
with respect to the number of edges (Figs. 7j–l), though here we can notice a much wider 



Page 24 of 31Dipalma et al. BMC Bioinformatics          (2025) 26:124 

standard deviation, especially at the extremes of the curves for UC1 and UC2, symptom 
that the number of edge has not a direct impact on performances.

Case study and application scenarios
In this section, we provide an example of how our designed pipeline can be used to 
retrieve relevant influences among proteins in a biological network. PPINs are often 
studied in the context of specific diseases or biological processes, focusing on interac-
tions directly linked to known molecular mechanisms. Our methodology, however, is 
designed to embed general knowledge about the dynamic behavior of these networks 
and to exploit recurrent interaction patterns to highlight potential regulatory influences 
that may not yet be explicitly annotated in BP databases.
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Fig. 7  MCC scores of the proposed DGN model stratified by various features (distance from input to output 
protein, CC, number of nodes, and number of edges) for the three use cases (UC1, UC2, UC3). Blue points or 
lines represent performances using only I/O features, while orange ones add protein embeddings as node 
features. Shaded areas indicate the standard deviation across observations
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To illustrate the pipeline’s application, we consider a case study related to type 2 dia-
betes (T2D). In the study by Son et al. [71], the authors pointed out that BACH2 plays a 
critical role in T2D-associated β-cell failure, showing that its inhibition can reverse the 
disease phenotype in experimental models. Their analysis was based on expression data, 
using single-cell transcriptomics and regulatory network inference to identify BACH2 as 
a key regulator of the insulin (INS) and glucagon (GCG) proteins, along with the AFF3 
and CUX2 genes. We take their analysis as reference knowledge to verify the model’s 
predictions, as it is based on single gene perturbation.

Our approach relies purely on network topology, making no use of expression data or 
regulatory activity measurements. The goal of this example is to predict INS and GCG 
dependence on some candidate regulators (BACH2, AFF3, CUX). To do so, we rely 
solely on the structure of plausible PPINs involving the target proteins, ignoring gene 
expression derived knowledge.

To construct the analysis, we employ the pipeline detailed in Fig.  4. The PPIN sub-
graphs were constructed as follows. We queried Reactome [7] for BPs containing the 
targets, filtering out super-pathways. The motivation behind querying Reactome instead 
of BioModels is twofold: on the one hand, Reactome contains a wider range of BPs; on 
the other hand, these BPs are different from the ones used to train the DGN. For each 
proteins set in the BPs, we retrieved the interaction network from BioGRID, similarly 
to what has been done for the DyPPIN extraction (see Sect. 2.1). The regulators were 
not included in any BP, while in the interactome they were just one or two hops away 
from the BPs proteins. Therefore, we added them in the PPIN subgraphs along with 
the proteins connecting them. Selected BPs were R-HSA-9768919 (NPAS4 regulates 
expression of target genes), R-HSA-210745 (Regulation of gene expression in beta cells), 
R-HSA-422356 (Regulation of insulin secretion), R-HSA-264876 (Insulin processing), 
R-HSA-163359 (Glucagon signaling in metabolic regulation), R-HSA-381771 (Synthesis, 
secretion, and inactivation of Glucagon-like Peptide-1), R-HSA-420092 (Glucagon-type 
ligand receptors). We predicted sensitivity for all possible input–output pairs (6531) in 
the PPINs, using the DGN variant trained without protein embeddings, as they were not 
available for the three regulators.

In Fig. 8, we report the predicted sensitivity of INS and GCG to the regulators. The 
scores are obtained by averaging the output of the sigmoidal readout units from the four 

Fig. 8  Predicted sensitivities of insulin (INS) and glucagon (GCG) with respect to the BACH2, AFF3 and CUX2 
genes. Values represent the output of the readout sigmoidal head, without thresholding, averaged across the 
4 models trained for UC1 without protein embeddings, and normalized by the highest prediction over all the 
input/output pairs in the BP
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models trained over the 4 different folds. BACH2 has the highest score in three out of 
seven BPs for INS and in 5 out of 7 for GCG, suggesting that it has a relevant role in the 
regulatory landscape of pancreatic hormones. We remark that this result was obtained 
without explicitly incorporating prior knowledge about the role of BACH2 in T2D or 
any expression data, demonstrating that our pipeline can infer relevant interactions 
based exclusively on the structure of the interaction network.

Although this initial implementation does not incorporate additional BP information, 
we believe that its generality enables numerous extensions. Co-expression magnitudes 
could be integrated as edge weights in the PPIN, refining the model’s ability to infer 
regulatory influences. Similarly, BP-specific features could be embedded in the graph 
representation to enhance sensitivity predictions. Another promising direction is the 
comparison of predictions across different network variants, such as control and patient-
specific interaction networks, to uncover the effects of gene expression alterations.

Beyond disease modeling, our method could support drug target identification. 
Since it highlights functionally relevant proteins based purely on network topology and 
dynamics, it can identify potential targets even when they are distant in curated interac-
tion databases. This capability is particularly relevant for diseases where well-character-
ized molecular mechanisms are lacking or where novel regulatory influences have yet 
to be mapped. Additionally, the model’s ability to infer indirect regulatory effects could 
help to reveal previously unrecognized intervention points, offering new directions for 
therapeutic development.

In drug repurposing, our approach could enable fast and systematic screening of 
potential alternative targets for approved drugs. By leveraging the model’s sensitivity 
predictions, researchers could prioritize proteins that, while not initially associated with 
a drug’s mechanism of action, may still exert a significant regulatory influence in dis-
ease-related networks. This could be especially useful for identifying secondary or com-
pensatory BPs that become relevant in drug-resistant conditions, or for expanding the 
therapeutic scope of existing compounds.

Finally, in a personalized medicine scenario, patient-derived networks could be rapidly 
constructed and analyzed, enabling individualized assessments of regulatory dynamics. 
Here, the model’s predictions could be integrated as an additional step in BP enrichment 
analyses performed in differential expression studies, improving the interpretability 
of functional interactions in PPINs. By incorporating patient-specific network modi-
fications, our approach could provide insights into how individual genetic variations 
or mutations influence disease mechanisms, potentially guiding tailored therapeutic 
interventions.

Conclusions
In this work, we have presented a DGN-based framework to infer sensitivity at the 
PPIN level, by exploiting information obtained at the BP level. This was achieved by first 
constructing a novel dataset of BPs annotated with sensitivity values obtained through 
simulation ( DyBP ), and then by explicitly transferring this information to the BioGRID 
PPIN, ultimately producing the DyPPIN dataset. Importantly, the graph nodes in both 
datasets are annotated with public protein identifiers, which makes them readily usable 
by existing biochemical pipelines. Furthermore, the information in these datasets can 
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also be used to provide standard annotations for protein pairs for classic PPI tasks. Both 
datasets are released for public use.

The DyPPIN dataset was used to train a DGN model and predict the sensitivity of 
pairs of proteins from BioGRID subgraphs by exploiting the graph topology, i.e., by lev-
eraging the way two proteins interact between themselves and among nearby proteins 
within the PPIN. We robustly assessed the performance of the proposed approach across 
different use cases and analyzed how the predictive performance vary in relation to the 
graphs’ characteristics. The results demonstrate that the PPIN topology is a major com-
ponent of the needed signal to infer sensitivity. Furthermore, we showed that model per-
formances can be further enhanced by adding additional sequence information in the 
form of protein embeddings. This latter point in particular opens up to the application of 
our methodology to contextualized PPINs, for example those including node-wise gene 
expression data, to improve performance on specific biological tasks by leveraging spe-
cific additional contextual knowledge.

The main issues of our model are the prediction for protein pairs that are far away in 
the PPIN, and the generalization capabilities on completely unknown PPIN subgraphs. 
As regards the former, it has been mitigated by employing a DGN variant that is aware 
of directionality, but efforts should be put in constructing a DGN architecture that bet-
ter deals with dense and short-diameter graphs. As regards the latter, the generalization 
capabilities could be improved by extending the training data with a wider range of BPs; 
this would require the retrieval of pathways from other repositories, like KEGG [6] or 
Reactome [7], and the development of strategies to compute dynamical properties over 
their pathways, which cannot be done through ODEs simulation.

Having such a powerful tool can be of great help in many real-world applications. 
For example, in a drug repurposing scenario practitioners often need to screen a large 
amount, possibly any, protein to identify potential influences that could lead to new 
therapeutic uses for existing drugs. The proposed method allows for the selection of the 
set of proteins targeted by a drug and the prediction of other potential targets through 
the trained DGN. This is a significantly more rapid process than that of running numeri-
cal simulations over BP, with the time taken to perform a single input/output pair pre-
diction being approximately 10−3 seconds on average. In comparison, the time taken for 
a simulation is at least four orders of magnitude larger [40]. We recognize that the need 
to select a set of proteins instead of operating on the whole PPIN could be a limitation 
in some use cases where there is no clue about the proteins set that need to be inves-
tigated. Future work should focus on learning and predicting dynamical properties on 
entire interactomes, but this opens new challenges because we need a way to model the 
dynamics of multiple pathways on a single graph.

Several directions can be taken in future studies. Although this study only concerns 
sensitivity with respect to the perturbation of an input concentration, it could be applied 
to analyze sensitivity with respect to the perturbation of other parameters (e.g., reaction 
rates). Along this line, the remark that the presented approach is general and could be 
applied seamlessly to the prediction of other dynamical properties (e.g., robustness or 
monotonicity, as done by Fontanesi et al. [40]). Also, it would be interesting to extend 
the framework to other biological networks or hybrid networks such as drug-target 
networks. Lastly, the pipeline could be specialized by adding complex node and edge 
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features to encode post-translational modifications or regulations. This would enable to 
specify more complex relationships than the BP-PPIN mapping considered in this study.
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