
Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you
modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of
it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

RESEARCH

Dipalma et al. BMC Bioinformatics (2025) 26:124
https://doi.org/10.1186/s12859-025-06140-1

BMC Bioinformatics

Sensitivity analysis on protein‑protein
interaction networks through deep graph
networks
Alessandro Dipalma1*, Michele Fontanesi1, Alessio Micheli1, Paolo Milazzo1 and Marco Podda1 

Abstract 

Background:  Protein-protein interaction networks (PPINs) provide a comprehen-
sive view of the intricate biochemical processes that take place in living organ-
isms. In recent years, the size and information content of PPINs have grown thanks
to techniques that allow for the functional association of proteins. However, PPINs
are static objects that cannot fully describe the dynamics of the protein interactions;
these dynamics are usually studied from external sources and can only be added
to the PPIN as annotations. In contrast, the time-dependent characteristics of cellular
processes are described in Biochemical Pathways (BP), which frame complex networks
of chemical reactions as dynamical systems. Their analysis with numerical simulations
allows for the study of different dynamical properties. Unfortunately, available BPs
cover only a small portion of the interactome, and simulations are often hampered
by the unavailability of kinetic parameters or by their computational cost. In this study,
we explore the possibility of enriching PPINs with dynamical properties computed
from BPs. We focus on the global dynamical property of sensitivity, which measures
how a change in the concentration of an input molecular species influences the con-
centration of an output molecular species at the steady state of the dynamical system.

Results:  We started with the analysis of BPs via ODE simulations, which enabled us
to compute the sensitivity associated with multiple pairs of chemical species. The
sensitivity information was then injected into a PPIN, using public ontologies (BioGRID,
UniPROT) to map entities at the BP level with nodes at the PPIN level. The resulting
annotated PPIN, termed the DyPPIN (Dynamics of PPIN) dataset, was used to train
a DGN to predict the sensitivity relationships among PPIN proteins. Our experimental
results show that this model can predict these relationships effectively under different
use case scenarios. Furthermore, we show that the PPIN structure (i.e., the way the PPIN
is “wired”) is essential to infer the sensitivity, and that further annotating the PPIN nodes
with protein sequence embeddings improves the predictive accuracy.

Conclusion:  To the best of our knowledge, the model proposed in this study
is the first that allows performing sensitivity analysis directly on PPINs. Our findings sug-
gest that, despite the high level of abstraction, the structure of the PPIN holds enough
information to infer dynamic properties without needing an exact model of the under-
lying processes. In addition, the designed pipeline is flexible and can be easily inte-
grated into drug design, repurposing, and personalized medicine processes.

*Correspondence:
alessandro.dipalma@phd.unipi.it

1 Department of Computer
Science, University of Pisa, Largo
Bruno Pontecorvo, 3, 56125 Pisa,
PI, Italy

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-025-06140-1&domain=pdf

Page 2 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124

Keywords:  Protein-protein interaction, Sensitivity analysis, Deep graph networks

Introduction
Protein-protein interaction networks (PPINs) represent the set of all known Protein-
Protein Interactions (PPIs) within cells. Existing PPIs can be of different nature: physical
interactions describe known reactions between proteins, genetic interactions describe
correlations in the expression of genes coding for two proteins, and predicted interac-
tions are documented via correlation studies or literature mining.

PPINs are crucial for understanding cellular function; to help in this endeavor, a vari-
ety of PPI databases have been developed. These differ in the types of interactions they
include, the level of detail provided, and their intended user base [1]. Well-established
examples of publicly available PPIN databases include: STRING [2], BioGRID [3] and
IntAct [4]. The integration of PPI data with other biological and biomedical information
has been a significant research focus, enabling advances in protein interaction predic-
tion, protein complex identification, drug-disease and drug-target associations. These
integrations often use shared ontologies to describe biochemical entities, such as Uni-
PROT for proteins [5].

Major PPI repositories depict a static snapshot of the interactome, which is instead
inherently dynamic; while interaction networks can provide insights about a biological
system organization, they lack explicit modeling of mechanistic insights. The dynamic
nature of biological systems is instead modeled by Biochemical Pathways (BPs), which
describe a series of interconnected biochemical reactions allowing the investigation of
their dynamics. Similarly to PPIs, BPs are collected into publicly available databases,
such as Kegg [6], Reactome [7] and BioModels [8]. The behavior of BPs can be described
by different dynamical properties, which quantify how the concentrations of molecules
involved in the BP change over time in response to different stimuli.

In particular, the focus of this study is on the dynamical property of sensitivity, which
measures how the change in concentration of an input protein influences the concentra-
tion of an output protein. Sensitivity, similarly to other relevant dynamical properties,
is often analyzed using ordinary differential equations (ODEs) or stochastic approaches
like the Gillespie algorithm [9]. These methods, however, can be applied only if the
kinetic parameters of all biochemical reactions are available, which is often not the case.
Among the mentioned databases, BioModels contains the largest number of simulation-
ready BPs.

In contrast with BPs, PPINs do not contain the kinetic and quantitative information
necessary to perform simulations. They can be seen as a high-level abstraction of all the
BPs involving the proteins, and this abstraction allows studying interactions belong-
ing to both known and putative BPs. It is also known that these networks exhibit com-
plex structure, the analysis of which allows deriving insights about the dynamics of the
biological dynamical system that they depict. In particular, identifying a correlation
between the BP dynamics and the topology of a related portion of the PPIN could ena-
ble the study of sensitivity (or other dynamical properties) directly from PPINs. In turn,
given the extensive interactome coverage of current PPINs, the scope of these analy-
ses could be widened to include PPIN portions for which a detailed description of the

Page 3 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124 	

underlying BPs is not available. With these motivations, this work investigates the pos-
sibility of inferring the sensitivity property directly at the PPIN level, rather than at the
BP level.

The workflow of this study is shown in Fig. 1. It comprises a dataset extraction phase
(in blue), a model training phase (in orange), and a final inference phase (in yellow)
which pertains to the end user. In the dataset extraction phase, we started by analyzing a
set of BPs taken from the BioModels database using ODE simulations. These simulations
allowed us to compute the sensitivity of a large set of input/output pairs of molecular
species. Then, we devised a mapping from BP proteins and complexes to PPIN nodes,
which allowed us to transfer the sensitivity annotations from the BPs to the correspond-
ing portion of the PPIN. The annotated PPIN was used to create a dataset whose exam-
ples are labeled PPIN subgraphs. Each subgraph is induced by an input protein and an
output protein, and the corresponding label indicates whether the concentration of the
output protein is sensitive to changes in the concentration of the input protein.

Given that the examples in the dataset are subgraphs, we choose to tackle the sensitiv-
ity prediction task with a class of models specifically designed to natively process graph-
structured data, namely Deep Graph Networks (DGNs) [10]. Thus, in the second phase,
we trained a DGN to predict the sensitivity from PPIN subgraphs. More precisely, we
built a model that takes as input a PPIN subgraph (containing the input/output proteins
on which sensitivity needs to be assessed), and outputs the corresponding sensitivity
prediction. We experimentally evaluated the performances of the model to establish its
generalization capabilities under different training and usage scenarios.

In the final inference phase, the trained DGN can be used to predict the sensitivity
of unseen PPIN subgraphs (for example, induced by some input/output proteins under
study). A major advantage of our approach is that, once the model is trained, the sen-
sitivity can be predicted directly at the PPIN level, bypassing the need for simulations
or predictions at the BP level. Correspondingly, the time to issue a prediction with the
trained model is orders of magnitude faster than running numerical simulations, making
the developed method suitable for large scale studies.

To ground our findings in real-world scenarios, we applied our methodology to a real-
world use case to showcase its flexibility and generalizability. Specifically, we used our

Model trainingDataset Extraction

BP simulation Sensitivity
computation

Sensitivity
Mapping to PPIN Model assessment

Sensitivity
prediction
from PPINDGN Training

DyBP DyPPIN Trained
DGN

Fig. 1  This work is logically divided into three phases: dataset extraction (in blue), model training (in
orange), and sensitivity prediction (in yellow). In the first phase, we performed numerical simulations on a
set of manually curated BPs. This process resulted in a preliminary dataset (DyBP) where BPs were annotated
with sensitivity information. Then, we mapped the sensitivity relationships in the DyBP dataset to a PPIN,
producing a second dataset (DyPPIN). Both datasets are made publicly available. In the second phase,
we trained a DGN on the DyPPIN dataset to predict sensitivity relationships, assessing its performances in
different use cases. Ultimately (third phase), the end user can use the trained DGN to predict the sensitivity
across different portions of the PPIN. The inference phase is visually detailed in Fig. 4

Page 4 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124

model to predict the sensitivity of diabetes-related proteins (insulin and glucagon) to
changes in concentration of known regulatory genes. Crucially, this analysis was per-
formed by only considering the interaction network structure, and purposedly neglect-
ing gene expression annotations. The results highlight that even in this challenging
conditions, the predictions of our model align with the biological expectations. To the
best of our knowledge, ours is the first method that allows to predict sensitivity from
PPINs, opening up to enhancing existing pipelines in practical applications such as
drug-target identification, drug repurposing, and personalized medicine. Furthermore,
the approach we present is general, and could be seamlessly applied to the prediction of
different dynamical properties in forthcoming studies.

Further relevant contributions of this work are the publication of two datasets describ-
ing sensitivity annotations for BPs and for protein pairs in PPINs, as well as the develop-
ment of a command-line tool to perform the sensitivity prediction on arbitrary PPIN
subgraphs.

The paper is organized as follows: Sect. 1.1 introduces the application context of
PPIN and an overview of machine learning methods to process and extract knowledge
from them. We then discuss how the problem of modeling the dynamics of biological
networks has been faced in literature (Sect. 1.1.1). Section 1.2 discusses how dynami-
cal properties of biochemical pathways can be predicted from graphs (Sect. 1.2.1) and
introduces the DGN framework (Sect. 1.2.2). Section 2 presents the process for dataset
extraction, DGN training, and sensitivity inference. Section 3 presents the outcomes of
the developed methodology: the characteristics of the extracted dataset are presented
in Sect. 3.1, while the model performances are discussed in Sect. 3.2 and 3.3. Section 4
presents example of how the designed pipeline could be used to perform predictions,
along with a discussion of the possible application scenarios that could take advantage of
them. Finally, we draw our conclusion in Sect. 5.

Related works

Over the years, a substantial research effort has been put into integrating PPI data with
other biological and biomedical information to infer new knowledge. Typical learn-
ing tasks are PPI prediction [11], protein complex identification [12], drug-disease [13]
and drug-target association [14]. In the following, we briefly survey methods that have
researched this integration by making use of protein sequences, structure, functional
annotations, and interaction data, with a focus on methods that employ machine learn-
ing techniques.

Many techniques have been proposed to predict interaction leveraging protein
metadata [15], protein 3D structure [16], and protein amino acidic sequences [17,
18]. Since the knowledge about individual proteins can be incomplete, different
methods have been designed to infer protein characteristics by analyzing other pro-
teins that are supposed to interact with the one of interest. For example, Zewen Xiao
et al. [19] constructed PPIN embeddings with a DGN that uses Page Rank to capture
higher-order relations, with the goal of predicting missing PPI arcs. Their approach
has proven effective in dealing with noisy PPINs. Similarly, Palukuri et al. [20] devel-
oped a reinforcement learning pipeline to identify protein complexes on large PPINs,
while Zhang and Kabuka [21] used a bag-of-words approach to learn features from

Page 5 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124 	

pairs of interacting proteins, with the goal of performing protein family annotation.
Concurrently, some other works attempt to fuse information coming from pathways
and the PPIN topology or to enrich pathways by adding features coming from PPIs.
In particular, Zhang et al. [22] merged information coming from gene-gene interac-
tions, PPIs, gene expression, and pathway databases to identify relevant pathways
connected to breast cancer. Similarly, Zhang et al. [13] used PPIs and KEGG path-
ways to identify relevant genes in breast cancer by performing random walk-based
network reconstruction. Besides tackling learning problems different from the one
presented in this work, all the above works consider the PPIN in a static setting. In
contrast, our goal is to build a model that is able to predict dynamic information
exploiting the PPIN structure.

Temporal data and PPINs

While PPI repositories concern static graphs, it is well-established that the interac-
tome is not static. Interaction networks are useful for analyzing the structure of sys-
tems or the results of their perturbation, but their lack of mechanistic insights and
their static nature make them unsuitable for representing dynamic systems [23, 24].
The goal of this study, namely to learn the “dynamics function” of a biological system
for which an exact mathematical model cannot be constructed, has been pursued by
other works, although with methodologies that can be considered transversal and
not directly comparable to ours. For example, Zhang et al. [25] built dynamic graphs
from temporal gene expression data of yeast and performed protein complex identi-
fication. Similarly, Jing et al. [26] used a dynamic DGN to predict the representation
of -omics from reverse phase protein array (RPPA) proteomics and genome-wide
expression as features, using a PPIN derived from the STRING database. Costello
and Martin [27] used machine learning approaches to learn the function underlying
the dynamics of metabolite and protein concentration from metabolic time series,
avoiding system modeling in favor of learning the dynamics directly from data. Chow
et al. [28] faced the problem of inferring missing time points in dynamic biological
networks via network alignment. Furthermore, Cinaglia [29] developed a method
based on DGN to evaluate node similarities in multilayer dynamic networks, which
supports comparative analysis between different structures of biological networks.

The discussed methodologies build a temporal graph relying on gene expression data,
which however tend to be noisy and with changes that are not significant at the PPI level.
Additionally, they are bound to introduce additional noise by lacking information on
post-transcription that interleaves the gene level with the PPI level. In contrast, we pro-
pose to use a different data source (biochemical pathways) to extract dynamical infor-
mation, and train a model able to predict the dynamical behavior of a PPIN without the
need to build a temporal graph. Our findings can also be seen as a method to enrich
PPINs and complementary to the use of temporal gene expression data, as we will dis-
cuss in the delineation of future research in Sect. 5.

Page 6 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124

Background

As for any other biological network, PPINs exhibit non-trivial topological features, that
have to be taken into account when designing algorithms to process them. In general,
biological networks are scale-free, have a high clustering coefficient, may present com-
munities, and have a short diameter despite usually having a large number of nodes.
Some of them exhibit a hierarchical structure [30–32]. These characteristics generally
make these networks robust to incompleteness, i.e., even in the presence of missing rela-
tions, it is possible to recover relevant information from the incomplete network. Both
Barabási et al. [33] and Santolini and Barabási [32] pointed out that the complex struc-
ture of biological networks allows the study of dynamical properties from static graphs
since the dynamics of the system arise from structural patterns. This finding has been
verified at a lower level of abstraction by applying network propagation to BPs extracted
from the Biomodels repository [8].

PPINs, on the other hand, can be seen as a high-level abstraction of a complex dynami-
cal system, whose functioning can be only partially defined by mathematical rules. Exact
analysis of the dynamics of biological systems in this sense is only possible from a hand-
ful of well-known BPs, which are studied as isolated systems.

Dynamical properties of BPs and sensitivity analysis

BPs are a series of interconnected biochemical reactions or molecular interactions that
occur within a cell or organism to perform a specific biological function. At their finest
granularity, these models can describe the kinetics of chemical reactions, allowing the
simulation of their dynamics by computing the changes in concentrations at small time
intervals. Simulations can be performed by reconstructing Ordinary Differential Equa-
tions (ODEs) from the reactions and through any algorithm for ODEs simulation, or via
stochastic approaches like the Gillespie algorithm [9]. The biggest repository of compu-
tational models apt to simulations is the BioModels database [8]. It contains models of
molecular interactions, cellular processes, and whole-organism systems. These models
are represented in a variety of formats, including the System Biology Markup Language
(SBML) [34], CellML[35], and Synthetic Biology Open Language (SBOL) [36].

In Bove et al. [37], Podda et al. [38, 39], Fontanesi et al. [40], the authors show that it is
possible to infer some dynamical properties of BPs by training a DGN to predict a binary
label representing whether the property holds or not. In these studies, BPs are repre-
sented as Petri Nets [41] where places represent concentrations of molecular species
and transitions stand for reactions. To compute the binary labels that serve as ground
truth for the training, they simulate the ODE system up to the steady state to assess the
robustness (specifically, α-robustness [42]), sensitivity, and monotonicity properties for
multiple pairs of biochemical species in the BP. Starting from these findings, in this work
we investigate the possibility of inferring a specific dynamical property, and precisely the
dynamical property of sensitivity, by leveraging the topology of PPINs rather than that of
BPs. Crucially, PPINs describe interactions at the protein level rather than at the molec-
ular species level; therefore, having such an inference mechanism would allow inferring
indirect influences (i.e., among proteins having a path of length > 1 between them).

Page 7 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124 	

Sensitivity, among other sensitivity analysis methods [43], determines how variations
in input factors influence a model output. In particular, the Morris method [44] is an
efficient global sensitivity analysis technique that allows for the computation of global
sensitivity indices by performing a limited number of model evaluations. This property
enables us to analyze if a single species’ initial concentration affects the output species’
steady-state concentration by performing a reduced number of time-consuming model
simulations. However, due to its computational efficiency, the Morris method is mainly
used for screening purposes, as it yields sensitivity indices that do not have a direct
interpretation in terms of output variance decomposition [45].

The Morris method is based on the concept of Elementary Effect (EE), a measure that
quantifies the influence exerted by a perturbation of an input factor si over the output
of a function f. Formally, given a mathematical model with k ∈ N input factors βk of the
form f (β1, . . . ,βk) , the EE measuring the influence of the input factor βi exerted on the
output of the function is defined as:

where � is a perturbation applied to a single input factor βi . In the context of BPs, the
output o = f (β1, . . . ,βk) is the steady-state concentration of a species, while the inputs
are the initial concentration values of the remaining species. To obtain a sensitivity index
with the Morris method, several EEs are computed with respect to different points in
the input space; these points, along with an appropriate � , are chosen through sam-
pling strategies. In this work, we adopt a radial sampling strategy derived from a Sobol
sequence [46], as proposed by Campolongo et al. [45].

Finally, the mean µ of the distribution of the absolute values of the EEs and the vari-
ance σ 2 of the distribution of the EEs are computed. The mean µ is interpreted as the
overall influence that βi has on o, while the variance σ 2 estimates the effect that βi has
on o due to interaction with other inputs. Both µ and σ 2 are compared to a threshold;
if either exceeds the threshold, the output is declared sensitive to that input factor. A
sensitivity of 1 indicates the output is highly influenced by the input species, while a sen-
sitivity of 0 indicates resistance to changes in that input.

Thus, sensitivity allows us to assess the importance of each parameter within the
model domain and understand how changes in input concentrations influence the sys-
tem’s behavior. Being a global property that involves all the species concentrations in its
computation, sensitivity suits our need to use information computed at the BP level to
perform predictions over a PPIN. A single protein of the PPIN can be a component of
multiple species in a BP because proteins bind to other molecules creating complexes
formalized as distinguished entities in the BP. As described in Sect. 2.1.2, we define a
dynamical property over a pair of proteins considering all the values of their complexes.
Therefore, we choose a global property, that looks at all the species in the BP and not
strictly to the input and output ones.

Deep graph networks for graph classification

A directed graph is a tuple

(1)EEi =
f (β1, . . . ,βi +�, . . . ,βk)− f (β1, . . . ,βi, . . . ,βk)

�

Page 8 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124

where VG is the set of nodes and EG ⊆ VG ×VG is the set of directed edges. The node-
wise connectivity of a graph can be expressed with a function:

The set of reversed edges of G is defined as ĒG = {(v,u) | (u, v) ∈ EG} . Similarly, the
function:

specifies the graph connectivity with all edge directions reversed. A subgraph
H[G] = �VH,EH� of G is a graph such that VH ⊆ VG and EH ⊆ EG . The graphs used in
this work are attributed, meaning that each graph node v ∈ VG is associated with a vec-
tor xv ∈ R

d of node features, with d ∈ N . We indicate with XG the set of all node feature
vectors of G . We oftentimes use the term skeleton to refer to the structure of a graph
without node features, i.e., considering only the sets V and E.

Although graphs are very flexible and expressive data structures, they require careful
handling to be used as inputs to machine learning models, since they can have varying
sizes (i.e., different number of nodes) and complex connectivity patterns. DGNs learn
from graph data by building a vectorial representation for each node of the graph called
embedding, which can be used to tackle classification and regression tasks on graphs. In
this work, we focus on the graph classification task, which can be defined informally as
learning a mapping from graphs to discrete labels. Typically, DGNs for graph classifica-
tion are composed of three main modules: message passing, pooling, and readout.

The message passing module takes an input graph and maps it to an isomorphic graph
where each node is associated with an embedding. This mapping is achieved iteratively:
at each iteration, the node embedding is updated as a function of itself and its neighbor-
ing embeddings. As the number of iterations increases, the receptive field of the nodes
(i.e., the portion of other graph nodes that contribute to the embedding computation)
grows, allowing the capture of global information from the graph [47]. Here, we focus
on convolutional variants of message passing, which structure the iterative mapping as
a sequence of neural layers (see, e.g., Bacciu et al. [10], Ye et al. [48] and the references
therein).

The pooling module takes as input the node embeddings computed with message pass-
ing and aggregates them into a single vector representing the entire graph. This step
ensures that each graph is encoded as a fixed-size embedding, regardless of its dimen-
sion and connectivity. Generally speaking, pooling can be performed using any permu-
tation-invariant function operating on multi-sets of embeddings.

The readout module takes as input the pooled graph representation and outputs a
class prediction. In general, any standard machine learning classifier can be used; usual
choices are logistic regression or multilayer perceptron (MLP) classifiers.

In convolutional DGN architectures, these three modules are typically differentiable,
allowing for gradient-based learning with backpropagation.

G = �VG ,EG�,

−→
NG : VG → 2VG : −{u | (u, v) ∈ EG}.

←−
NG : VG → 2VG : −{u | (v,u) ∈ ĒG}

Page 9 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124 	

Methods
Before proceeding, let us restate the goal of this study for clarity. Our aim is to build
a machine learning model able to predict the dynamical property of sensitivity from
PPIN subgraphs. To this end, Sect. 2.1 describes how we created a dataset to train
the proposed model. This process involved performing simulations on a set of BPs
and computing the sensitivity among pairs of molecular species (Sect. 2.1.1), map-
ping the sensitivity information to the PPIN (Sect. 2.1.2), and augmenting the PPIN
subgraphs with node features (Sect. 2.1.3). Then, Sect. 2.2 describes the architecture
of the proposed machine learning model, including how it is used during training and
inference. Finally, Sect. 2.3 describes the setup of the experiments we performed with
the proposed DGN.

Dataset creation

To the best of our knowledge, there currently is no public dataset about dynamical
properties prediction over PPINs. This section explains how we obtained one for our
purposes. As stated in Sect. 1.2.1 we focus on sensitivity, although the method we
propose is general and can be applied seamlessly to other dynamical properties. To
help the reader understand the workflow, we show in Fig. 2 the process to obtain a
training data sample starting from a single BP.

BP simulations and sensitivity computation

We downloaded all 1063 manually curated models in SBML format [34] from the Bio-
models repository [8]. Each model is represented as a set of reactions, as exemplified
in Fig. 2, box (1). We then converted the reactions set into a system of ODEs as shown
in Fig. 2, box (2), and simulated them up to steady state using the libroadrunner
library [49], which applies a numerical integration method to the ODE system. The
simulation schema follows the one presented in [37] and [40]. We did not simulate
BPs composed of assignment rules exclusively, and/or delayed differential equations,
as they are not supported by the library. Furthermore, we discarded simulations that
failed completely, due to numerical instability introduced by variations at too differ-
ent scales, or partially, whenever we could not obtain at least 10 EEs to compute the
sensitivity.

After running the simulations, we obtained a set S of 842 successfully simulated
BPs. Formally, a BP obtained after the simulations is completely specified by the tri-
plet S = �SS ,PS ,φS � where:

•	 SS is the set of molecular species interacting in the pathway. We use the letter s to
indicate elements of SS , which can be single proteins or protein complexes;

•	 PS ⊆ SS × SS is the set of input/output molecular pairs on which the sensitiv-
ity is calculated. We use the notation (sin, sout) to denote elements of P;

•	 φS : PS → {0, 1} is a function that computes the sensitivity for a given input/
output pair using the Morris method (see Sect. 1.2.1). More specifically,
φS (sin, sout) = 1 if sout is sensitive to sin , and 0 otherwise.

Page 10 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124

We assembled this information into a dataset which we termed DyBP (Dynamics of
Biochemical Pathways), defined as follows:

A portion of the DyBP dataset in tabular form is shown in Fig. 2, box (3).

DyBP =
⋃

S ∈ S

{�sin, sout ,φS (sin, sout)� | (sin, sout) ∈ PS }.

(7) Induced graphs with I/O features+protein embeddingsProtein embeddings

0 1

1 0

0 0

0 0

0 1

0 0

1 0

0 0

...

(1) Pathway reactions set

D

A

k1

s1 s2

s3 s5

s4 s6

k2

k3

(5) DP mapping to PPIN

DyBP

(2) ODEs system (3) DP values for each I/O pair

DyPPIN

(4) PPIN subgraph retrieval

Species

Protein

Other molecule

Reaction

Inhibitor

Promoter

Species to protein mapping

...0 1

1 0

0 0

0 0

0 1

0 0

1 0

0 0

(6) Induced graphs with I/O binary features

BioModels

Biochemical Pathway S Protein-Protein Interaction Network

BP Input Output Sensitivity

sin sout yin,outS

S s1 s2 1

S s1 s3 0

S s1 s4 0

S s1 s5 1

. . .

s1
/−−→ s2

s2
/s3−−→ s1

s3 + s4
s2/−−→ 2s5 + s6

ds1
dt

= −k1s1 + k2
s2
s3

ds2
dt

= k1s1 − k2
s2
s3

ds3
dt

= −k3s3s4s2

ds4
dt

= −k3s3s4s2

ds5
dt

= 2k3s3s4s2

ds6
dt

= k3s3s4s2

S

BP Input Output Sensitivity

uin uout yin,outS

S u1 u2 1

S u1 u3 0

S u1 u4 0

S u2 u1 1

S u2 u3 1

S u2 u4 0

. . .

BP Input Output Sensitivity

uin uout yin,outS

S u1 u2 1

S u1 u3 0

S u1 u4 0

S u2 u1 1

S u2 u3 1

S u2 u4 0

. . .

c4

c1
c2

c3

u1

u2

u3

u4

u1

u2

u3

u4

u5

u6

u7 u8

u9
u10

u11

u12

u13

u14

u15u16u17

u18u1 u1

u2

u2u3 u4

〈G2,1
S , 1〉 〈G1,4

S , 0〉

〈G2,1
S , 1〉 〈G1,4

S , 0〉

GS

B

Fig. 2  Dataset extraction process for a single BP S . (1) The BP’s model is downloaded from the Biomodels
repository. (2) The BP is converted to ODEs and simulated to steady state multiple times. (3) The sensitivity
is computed from the simulations’ results for each possible input/output pair in the BP. (4) The BP-related
protein interaction graph GS is built by retrieving the BioGRID interactions among the proteins in the BP;
note that multiple species can be mapped to the same protein (orange arrows), e.g. s1, s2 to u1 , and a single
species can be mapped to multiple proteins, e.g. s5 to u2 and u4 . (5) The DyPPIN dataset consists of the DPs for
each I/O species pair that are mapped to each protein-protein pair. (6) Each DyPPIN data sample induces a
graph G in,out

S
 for the DGN training: the skeleton conveys the PPIN subgraph topology, while the node features

X
in,out
S

 represent whether the node is the input uin or the output uout . Optionally, the node features can be
augmented with protein embeddings from UniProt (7). The graphs G in,out

S
 and their sensitivity labels yin,out

S
 are

used as input and the target variables of our graph classifier

Page 11 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124 	

Mapping of BP information onto the BioGRID PPIN

The next step entailed mapping the sensitivity information contained in the DyBP data-
set to the interactome. This mapping is not trivial, since species in a BP can be complexes
containing multiple proteins, and the same protein can be a part of multiple complexes.
After taking into consideration different PPI databases (IntACT, STRING, BioGRID),
we chose BioGRID as the reference interactome since it contains the largest number of
curated physical interactions involving BP proteins. We consider all the PPIs in BioGRID
independently from the organism they refer to.

Let B = �VB ,EB� be the graph representing the BioGRID interactome, where nodes
u ∈ VB are proteins and edges EB ⊆ VB ×VB are PPIs. The connection between BPs
and PPINs stems from the fact that BP species s ∈ S are essentially individual proteins
or protein complexes that we represent as sets of proteins, some of which belong to the
interactome,1 i.e., s ⊂ VB . Having made this crucial observation, for each BP S in the
DyBP dataset we induce a BioGRID subgraph Gin,out

S
= �VS ,ES ,X in,out

S
� where:

•	 The set of nodes is composed of all the interactome proteins belonging to at least one
molecular species in SS . More formally, VS = {u ∈ VB | ∃s ∈ SS : u ∈ s}.

	 As a further restriction, we filtered out proteins that are not associated with a Uni-
PROT identifier,2

•	 The set of edges is composed of all the PPIs in the BioGRID graph having proteins in
VS as vertices,

•	 X
in,out
S

 is the node features set that is constructed depending on the choice of an
input protein uin and an output protein uout (see Sect. 2.1.3).

We remark that even though the notation does not explicitly specify it, GS is to be con-
sidered as a proper subgraph of the BioGRID PPIN, in the sense that VS ⊆ VB and
ES ⊆ EB . An example of mapping a BPs to the corresponding BioGRID subgraphs is
shown in Fig. 2, box (4). In practical applications, this mapping could produce a discon-
nected BioGRID subgraph, as there is no guarantee that nodes in VS all share a direct
interaction. To avoid this issue, we complete VS and ES by adding all the proteins and
interactions in B that belong to a path of minimal length between any pair of connected
components to restore full connectivity. Lastly, we associate the sensitivity information
for any two pairs of proteins in the subgraph with the following rule:

In other words, if at least one species including protein uin influences at least another
species including protein uout at the BP level we claim the same influence at the PPIN
level.

yin,out
S

=
{

1 if ∃ (si, sj) ∈ PS ,uin ∈ si,uout ∈ sj : φS (si, sj) = 1,
0 otherwise.

1  Technically, a species can include other molecules, but we do not consider them since we are interested in proteins
only.
2  UniPROT was chosen since it is the most widely used ontology for proteins in PPI databases.

Page 12 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124

During the mapping process, several BPs were mapped into trivial BioGRID subgraphs
containing a single node or a completely disconnected set of nodes. This was caused by
different reasons, such as lack of corresponding PPIs or due to protein identifiers miss-
ing in the SBML model. To prevent adding trivial subgraphs to the DyPPIN dataset, we
discarded all BPs with trivial structure as well as those who mapped to trivial BioGRID
subgraphs; as a consequence, we were able to extract BioGRID subgraphs from 279 BPs
out of the original 842.

Having obtained the subgraphs and their respective sensitivity indicators, we assem-
bled this information to create a dataset, which we termed DyPPIN (Dynamics of Pro-
tein-Protein Interaction Networks), as follows:

A subset of the DyPPIN dataset in tabular form is displayed in Fig. 2, box (5). Ultimately,
the DyPPIN dataset contains 17169 training pairs.

Adding node features to subgraphs

Before being processed by the DGN, each BioGRID subgraph in the DyPPIN dataset is
augmented by adding a vector of node features. More precisely, given a subgraph Gin,out

S

as defined in Sect. 2.1.2, we associate each node v to a vector xv ∈ R
d = [I;O; x̃v] , with

[;] indicating concatenation, where:

Basically, the first two components of xv indicate whether the current node is an input
protein, an output protein, or neither. We call these two components the I/O features.
The remaining component x̃v is not fixed, but varies depending on the experiments. Spe-
cifically, it can be:

•	 Empty, to let the DGN learn from the structure alone and assess the binding between
graph structure and sensitivity;

•	 a Protein sequence embedding predicted by the protein language model ProtT5, as
downloaded from UniProt [17]. These embeddings are produced by tokenizing pro-
tein sequences and applying positional encoding. The sequences are then passed
through a transformer model to generate context-aware embeddings from the last
hidden state of the transformer’s attention stack. We compress the embeddings via
principal component analysis from the original dimension of 1024 to 128. The opti-
mal number of components has been selected by taking the kneading point of the
explained variance ratio curve [50];

•	 a One-hot encoding of the possible protein identifiers in DyPPIN , (1029 in total).
These features will serve as “protein information baseline”: as they are just an identi-
fier, they are useful to check whether we actually need the rich information stored in
the protein embedding.

Finally, we arrange all the node feature vectors into a set X in,out
S

 to be used by the DGN
during training or inference. An example of BioGRID subgraph encoded with the

DyPPIN = {�Gin,out
S

, yin,out
S

� | (uin,uout) ∈ (VS ×VS)}.

I =
{

1 if v = uin
0 otherwise,

O =
{

1 if v = uout
0 otherwise.

Page 13 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124 	

corresponding node features (with empty x̃v ) is shown in Fig. 2, box (6). Similarly, Fig. 2, box
(7) shows the same graph but with x̃v containing ProtT5 embeddings taken from UniProt.

DGN architecture

In this section, we present the details of the DGN architecture used to learn sensitivity from
PPINs. We refer the reader back to Sect. 1.2.2 for a general understanding of the main DGN
concepts. At a high level, the DGN receives and processes a DyPPIN BioGRID subgraph
GS , encoded as described in Sect. 2.1.3, to produce a sensitivity prediction ŷS ∈ (0, 1) as
output. Notice that we drop the in, out superscript for conciseness. The overall architec-
ture is shown in Fig. 3; below, we describe its main modules (message passing, pooling, and
readout) in detail.

Message passing module The message passing module takes as input a graph G , and spe-
cifically its node features XG and the connectivity functions

−→
NG and

←−
NG , giving as output a

graph isomorphic to G where each node v is associated to an embedding hLv ∈ R
h , where

h ∈ N is the embedding dimension. In practice, the message passing module maps the input
to the output with a stack of L subsequent graph convolutional layers. The computation is
initialized with h0v = xv , i.e., by setting the node features as initial embeddings. Then, each
intermediate graph convolutional layer processes its input as follows (for ℓ ≥ 1):

In Eq. 2, the current node embedding hℓ−1
v is updated as a function of itself and a per-

mutation-invariant aggregation (denoted with
⊕

 ) of its incoming neighbors, as selected
through

−→
NG . This computation is parameterized by learnable weights

−→
W 1,

−→
W 2 ∈ R

h×h .
Analogously, Eq. 3 updates the current node embedding as a function of itself and its
outgoing neighbors, as selected through

←−
NG . This computation is parameterized by a dif-

ferent set of learnable weights
←−
W 1,

←−
W 2 ∈ R

h×h . Finally, in Eq. 4, the two intermediate

(2)
−→
h

ℓ
v =

−→
W 1h

ℓ−1
v +−→

W 2

⊕

v′∈−→NG(v)

h
ℓ−1
v′ ,

(3)
←−
h

ℓ
v =

←−
W 1h

ℓ−1
v +←−

W 2

⊕

v′∈←−
NG(v)

h
ℓ−1
v′ ,

(4)h
ℓ
v = α

−→
h

ℓ
v + (1− α)

←−
h

ℓ
v .

Fig. 3  The proposed DGN architecture for sensitivity prediction. Given a PPIN subgraph GS , its node features

XG and connectivity functions
−→
NG and

←−
NG are provided as input to the message passing module, which

computes the node embeddings by applying L graph convolutional layers to the node features. After each
convolutional layer, the embeddings are passed through a ReLU non-linearity and a dropout layer. Then,
the final embeddings are aggregated into a single graph representation via the pooling module. Lastly, the
readout module takes in the aggregated graph representation and computes a sensitivity prediction ŷS

Page 14 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124

embeddings are combined into a final embedding as a convex combination with coef-
ficient α . This implementation combines ideas from previous contributions in the field
of DGNs [51, 52] which are particularly suited to our task. Specifically, learning the con-
tribution of incoming and outgoing neighbors with separate sets of weights reflects the
fact that in a PPIN, a node can play the role of source (resp. target) of the interaction.
Thus, having distinct sets of weights creates two distinct flows of information depend-
ing on the role taken by each node, where the “strength” of each flow is modulated by
α . Also, remark that the weights are adjusted by the network during the learning phase
in order to better approximate the relationship between the input PPINs and the output
sensitivity.

After L graph convolutional layers, the resulting embeddings hLv are further passed
into an element-wise ReLU non-linearity and a final Dropout layer [53]. Dropout is a
model regularization technique that deactivates neurons with a certain probability dur-
ing training, encouraging the neural network to learn more robust features.

The message passing module includes several hyperparameters that have been tuned
during model selection: the number of graph convolutional layers L, the embedding
dimension h, and the convex combination coefficient α . We refer to Sect. 2.3.2 for an in-
depth discussion.

Pooling module The pooling module takes as input the node embeddings at the last
message passing layer and aggregates them into a single vector representing the entire
graph. This step ensures that each graph is encoded as a fixed-size embedding, regard-
less of its dimension and connectivity. In this work, we only consider add pooling, which
aggregates using the sum. Therefore, the pooling module produces a graph representa-
tion hg ∈ R

h by aggregating the node embeddings at layer L as follows:

Readout module The readout module takes as input the pooled graph representation
and outputs a sensitivity prediction ŷS ∈ (0, 1) . In this work, the readout module is a
simple logistic regression classifier:

where w ∈ R
h and b ∈ R are learnable weights, and sigm is the sigmoid function.

Training and inference

During training, the DGN receives mini-batches B ⊂ DyPPIN of training samples,
where each training sample is a tuple 〈GS , yS 〉 . The graph GS is processed by the DGN
to obtain a prediction ŷS , which is compared to the true sensitivity yS through a binary
cross entropy function as follows:

The DGN parameters are then adjusted to reduce the average loss of the batch using sto-
chastic gradient descent.

(5)hG =
∑

v∈VS

h
L
v .

(6)ŷS = sigm(wT
hG + b),

(7)L(yS , ŷS) = 1

|B|
∑

�GS ,yS �∈B
yS log(ŷS)+ (1− yS) log(1− ŷS).

Page 15 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124 	

Once the DGN has been trained, it can be used for inference, i.e., to predict BioGRID
subgraphs that were not seen during training, as shown in Fig. 4. In this case, a user only
needs to select a portion of interest in the BioGRID interactome, as shown in box (1);
choose an input and output protein whose sensitivity needs to be predicted, as depicted
in box (2); and finally feed the corresponding subgraph GS to the DGN, as shown in
box (3). We provide a command line tool that implements this inference pipeline in the
attached code repository.

Experimental design and performance evaluation

When dealing with any prediction task over groups of proteins, it is crucial to properly
split the available data to avoid unrealistic performance estimations [54]. As proteins
form a densely connected graph due the presence of hubs, splitting nodes and edges to
form disjoint sets is infeasible, especially for a dataset covering a small part of the inter-
actome like ours (see Sect. 3.1). Rather, we can quantify the expected data leakage and
avoid overestimating graph models performances by designing proper validation strate-
gies [55, 56]. We defined different data splitting strategies to evaluate performances in
three different use cases (UCs). The UCs reflect how the test graphs overlap with those
in the training set.

UC1	� Unknown input/output pair. In this case, the data samples of DyPPIN were
split with a standard random sampling. Therefore, the same PPIN subgraph can
be present both in the training and test sets but with different input/output pairs.
This corresponds to the scenario where the user wants to predict the sensitivi-
ties of new input/output pairs within a group of proteins that could be in BPs in
DyBP.

UC2	� Unknown protein. In this case, we performed a k-fold split over the proteins
in DyPPIN, inducing a split over the data samples. Basically, we ensure that
the held out subset of proteins in the test set does not appear in any training
pair (either as input or output). This corresponds to the scenario where the user
wants to predict the sensitivity for proteins that are not in DyPPIN. Notice that
this setup is more challenging than UC1 since a model is trained without all the
sensitivity information about some proteins.

UC3	� Unknown subgraph. In this case, we performed a k-fold split over S , induc-
ing a split of the data samples with respect to their skeletons. This corresponds

(1) PPIN subgraph selection (2) uin and uout selection (3) Sensitivity prediction via DGN

0 0

0 0

0 1

0 0

0 0

1 0

DGN

uout is sensitive to uin

uout is not sensitive to uin

u1

u2

u3

u4

u5

u6

u7 u8

u9
u10

u11

u12

u13

u14

u15u16u17

u18

u1

u2

u3

u7

u13

u14

Fig. 4  An example of how sensitivity is predicted on a trained DGN. The user has to (1) select the subgraph
containing the proteins of interest, here marked in yellow, (2) the input protein uin to perturb, and the output
protein uout on which the sensitivity needs to be assessed. (3) The DGN model processes the induced graph
and predicts whether uout is sensitive to uin

Page 16 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124

to the scenario where the user wants to assess the sensitivity within a group of
proteins that induce a totally new PPIN subgraph. This is the most challenging
scenario, because the model needs to generalize over unobserved topologies
containing mostly unobserved nodes.

We remark that the inference tool allows the user to evaluate in which UC a prediction
falls. This is done by computing the overlap between the imputed proteins and the pro-
teins in DyPPIN on which the DGN model has been trained. Notice that UC2 and UC3
can be seen as information ablation tests with respect to the base case UC1.

Performance metrics

Performances have been assessed using accuracy, F1-score, Area Under the Receiving
Operator Curve (AUROC), and Matthews Correlation Coefficient (MCC). In particular,
the accuracy defined as:

where TP, TN, FP, FN stand for true positives, true negatives, false positives, and false
negatives, respectively. Accuracy was chosen since it is a standard metric for classifica-
tion tasks. However, accuracy is less interpretable when class imbalance is at play (our
case). Therefore, we computed additional metrics that are more informative under class
imbalance. Specifically, the F1-score is computed as:

which corresponds to the geometric mean between precision (i.e., positive predictive
value), and recall (i.e., sensitivity). F1-score is more advantageous since it is imbalance-
aware (it is 0 in case of a null classifier that only predicts the majority class). The AUROC
measures the probability that the model ranks a randomly chosen sensitive example
higher than a randomly chosen non-sensitive example [57]. AUROC ranges from 0 to 1,
and a null classifier obtains an AUROC of 0.5. However, AUROC can provide a decep-
tively high score when the classifier is biased towards the majority class. Lastly, we com-
puted the MCC, defined as:

Essentially, the MCC measures how much the predictions correlate with the true sen-
sitivity labels, ranging from −1 (perfect negative correlation) to 1 (perfect positive cor-
relation). An MCC score of 0 indicates that the predictions are not correlated with the
targets. It is worth noting that MCC is imbalance-agnostic and symmetric (i.e., it treats
the positive and negative class equally) [58, 59].

Model selection and evaluation

We evaluate the model through a grouped 4-fold cross-validation, stratified by the
sample labels yS . Specifically, we split the DyPPIN dataset into four subsets (or

ACC = TP+ TN

TP+ TN + FP+ FN
,

F1 = 2TP

2TP+ FP+ FN
,

MCC = TPTN − FP FN√
(TP+ FP)(TP+ FN)(TN + FP)(TN + FN)

.

Page 17 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124 	

folds). In turn, one of the four folds is held out for testing, while the remaining three
folds are further partitioned into a training set (used to fit the model parameters)
and a validation set (used to tune the model hyperparameters). We use grouping for
UC2 (resp. UC3) to build the folds so that all data samples for a protein (resp. BP)
do appear either in the training, validation, or test set, hence preventing information
leakage and ensuring that the model performances are properly evaluated.

Since the number of samples per BP is highly variable across the DyPPIN dataset (a
characteristic further analyzed in Sect. 3.1), we carefully selected the optimal number
of groups in order to have a coherent number of samples for training, validation, and
test set across the different folds. The groups are also stratified with respect to the
sensitivity labels to homogenize the distribution of the classes across the folds.

The best DGN hyperparameters of the DGN were chosen using grid search. Specifi-
cally, we first defined a grid of possible values for each hyperparameter, and then we
exhaustively evaluated all combinations of from the grid on the validation set, choos-
ing the set of hyperparameters which scored the highest F1. Tuned hyperparameters
include:

•	 Number of layers L, chosen in the set {1, . . . , 8};
•	 Embedding dimension h, chosen in the set {32, 64, 128, 256, 512, 1024};
•	 Convex combination coefficient α , chosen in the set {1.0, 0.9, 0.5};
•	 Learning rate, chosen in {1e − 3, 5e − 4, 1e − 4, 1e − 5};
•	 L2 regularization coefficient � , chosen in {1e − 1, 1e − 2, 1e − 3, 1e − 4, 1e − 5, 0};
•	 Units dropout percentage, chosen in {0, 0.25, 0.5};
•	 Neighborhood aggregation operator

⊕

 , chosen between the sum and mean oper-
ators.

Baseline models Since we are interested in investigating whether the PPIN structure
plays a role in inferring sensitivity, we compared the proposed architecture to a base-
line where the graph connectivity is discarded. Basically, we kept the same architec-
ture shown in Fig. 3, but we replaced the message passing module with a multilayer
perceptron with one hidden layer, which is applied to the node features, similarly
to the DeepSets architecture [60]. In practice, the graph embedding is computed as
follows:

and fed to the readout module, similarly to the proposed model. Basically, the role of the
baseline is to check if the graph structure is needed to accomplish the task, following the
current best practices for the evaluation of graph classifiers [61].

We also included a “null” baseline which always predicts the majority class, to check
whether the model provides any meaningful learning beyond the trivial prediction of
the most frequent class.

Furthermore, we performed grid searches using other graph convolutional architec-
tures, GCN [62] and GIN [63], whose results are provided as supplementary material.

(8)hG =
∑

v∈VG

MLP(x0v),

Page 18 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124

Other details about model training We use weighted batch sampling to mitigate the
bias induced by the imbalance in the distribution of sensitivity indicators (see Sect. 3.1).
The training was performed using the Adam optimizer [64]; we use early stopping with
100 epochs patience and tolerance 10−6 . The model has been implemented in PyTorch
[65], PyTorch Lightning [66], and PyTorch Geometric [67] for the model development,
Ray Tune [68] and Wandb [69] for the grid search management. Experiments were run
on a single machine with two NVIDIA® A30 GPUs with 24 GB of dedicated memory,
and two 28-core Intel® Xeon® Gold 6238R CPU @ 2.20GHz, and 250 GB of RAM. Due
to early stopping, training times show a great variance depending on the UC and the
node features. An epoch took 6 s on average. The final configurations took 12 to 26 min
in UC3, while in UC1 and UC2 they range from 17 to 248 min. Usage of node features
led to earlier stopping in all UCs (2 to 10 times less epochs), at the cost of a larger mem-
ory consumption. In terms of scalability, we remark that our method works on small
PPIN subgraphs, each of which covers a small interactome portion of interest. Therefore,
we reasonably expect that the training times will scale proportionally with the number
of training subgraphs, thus remaining into feasible ranges. Details about training times
can be found in the model selection notebook in the code repository (see the “Availabil-
ity of data and materials” section).

Results and discussion
In this section, we present a comprehensive analysis of the DyPPIN dataset and evalu-
ate the performance of the proposed model on various use cases. In Sect. 3.1, we analyze
the data to give insights into its structure and characteristics, which is crucial for under-
standing the context of our experiments. In Sect. 3.2, we discuss the results obtained
from different model configurations and their performance across different experimen-
tal setups. Finally, in Sect. 3.3, we perform an error analysis to identify patterns in the
misclassified samples and understand the limitations of our models.

Fig. 5  Statistics about the 279 PPIN subgraphs in the dataset. The graphs are generally small, i.e. they have
9 nodes and 23 edges on average. The average and maximum path length among any two nodes in the
graphs are short ( ∼1.5 and ∼3), which is an expected property of PPINs. The clustering coefficient has a mean
of 0.5, but there is a not negligible part of strongly connected and loosely connected graphs

Page 19 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124 	

Dataset analysis

The DyPPIN dataset features 17169 samples coming from 279 different BPs. The data-
set is imbalanced towards the non-sensitivity class (i.e., yS = 0 ), which covers 67.6%
of the sample labels. The class distribution is not uniform for each BP. Figure 5 shows a
high variance of the number of nodes, edges, maximum path length, and clustering coef-
ficient.3 In particular, it can be noticed that most of the graphs are quite small, having a
number of nodes between 4 and 10 and between 4 and 25 edges. Observing the cluster-
ing coefficient, the average degree, and the maximum path length reveals that in general,
every node is connected to half of the nodes in the network. Therefore, the topological
features of the graphs in DyPPIN are aligned with those of the typical biological net-
works discussed in Sect. 1.1.1. This is crucial since our desire is to learn from graphs
matching the generic PPIN topology.

Since we compute the sensitivity between any pair of species in a BP, the number
of data samples grows exponentially with the number of species. Therefore, BP hav-
ing larger graphs will also have many more samples (see Fig. 6a), which could cause
the model to overfit the larger graphs. Also, proteins belonging to larger graphs will be
involved in more I/O pairs, causing further imbalance. From Fig. 6b we can observe that
the number of data samples for each protein follows a power law distribution.

The DyPPIN dataset encompasses 1009 different proteins, covering 1.14% of all the
proteins in the BioGRID PPIN. Similarly, the PPIs among them (2826) cover only 0.13%
of the BioGRID PPIN. This is not surprising as we know that the set of BPs in the Bio-
Models repository has minimal coverage. By considering the interactions of the sole pro-
teins in the dataset, we cover 5.35% of the reactions involving them. Clearly, this implies
that the set of subgraphs used in this study mostly covers well-studied BPs, which could
be perceived as a bias. However, it is crucial to remark that our approach is topology-
based, and that our experimental setup is designed to explicitly stress-test the model to
predict unseen interactome regions (as detailed in Sect. 3.2), which may as well con-
tain less-studied BPs. Therefore, as long as the PPIN subgraphs are extracted with the
methodology detailed in Sect. 2.1, whether the BP is less-studied does not constitute a
concern. Despite the small coverage, most of the proteins in the DyPPIN dataset (97.5%)
are present in more than one BP, as shown in Fig. 6(c). This is a much-desired property

(a) Amount of BP by number of
data samples.

(b) Amount of proteins by num-
ber of data samples

(c) Amount of BP in which a
protein is present.

Fig. 6  Distribution of proteins and BP with respect to the amount of data samples. For example, the highest
bar of Fig. 6(c) can be interpreted as: “there are 40 proteins that are present in 5 different BPs”. Note that these 5
BP can be different for each protein, so we are referring to up to 800 different BPs

3  A measure of how likely it is that nodes form tightly knit groups [70]

Page 20 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124

since it will allow us to verify whether we can learn from some BPs in which the protein
interacts and infer the sensitivity of new ones.

Model performances

In this section, we review the results obtained for each use case presented in Sect. 2.3.
For clarity and conciseness, we focus the discussion of the results on the MCC metric;
however, similar considerations can be extended to the other reported metrics without
loss of generality.

UC1: Unknown input/output pair. We remind the reader that in this use case, our
aim is to test to what extent the models generalize to unseen input/output pairs (which
however belong to proteins that are seen during training). The results of this experiment
are reported in Table 1. We notice that the vanilla DeepSets variant predicts essentially
at random, as indicated by the MCC metric which is close to 0 (indicating that its pre-
dictions are not correlated with the true sensitivities). This suggests that when both the
graph structure and the protein embeddings are not used, the resulting model is unable
to generalize.

When protein embeddings are added to the node features, the resulting model starts
to properly generalize, as indicated by the significant 7.6x improvement in the MCC
metric obtained by the DeepSets+emb variant with respect to the vanilla variant. The
next leap in performance is achieved by the vanilla DGN variant, which improves the
MCC metric upon the DeepSets+emb variant by a further 32% despite not using addi-
tional protein embeddings as node features. This suggests that in this task, the graph
structure (i.e., the way the PPIN subgraph is “wired”) has a stronger impact than the
protein embeddings on performances, and that DGN are able to exploit it to improve
predictions. Lastly, adding protein embeddings to the DGN nodes further improves per-
formances, as demonstrated by the 23% MCC improvement achieved by the DGN+emb
variant over the vanilla DGN variant. Overall, these results align to our initial hypoth-
esis that the combination of the graph structure and the protein embeddings (which also
encode structural and sequential patterns) provide the strongest signal to learn the sen-
sitivity prediction task.

UC2: Unknown protein. This use case tests whether the models generalize to input/
output pairs containing unseen proteins. The results of the experiments are reported
in Table 2. As explained in Sect. 2.3, this is a more challenging setup than UC1, where
we expected a slight decrease in performance. From the comparison, we notice that

Table 1  Average test scores (± standard deviation) obtained by the different models in the random
hold out use case (UC1). The suffix +emb indicates that protein sequence embeddings were
concatenated to the I/O features. Best results are boldfaced 

Model MCC F1 ACC​ AUROC

Null .000±.000 .000±.000 .676±.000 .500±.000

DeepSets .062±.043 .284±.140 .574±.167 .650±.004

DeepSets+emb .472±.006 .647±.004 .764±.004 .817±.002

DGN .625±.009 .750±.006 .830±.009 .907±.004

DGN+emb .767±.004 .843±.002 .897±.003 .957±.002

Page 21 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124 	

by adding protein embeddings the DeepSets+emb variant scores a significant 19.8x
improvement (with respect to the vanilla DeepSets variant) in the MCC metric, indi-
cating that protein embeddings are beneficial to generalization. As regards DGNs, we
observe that the vanilla variant does not improve upon the DeepSets+emb variant.
However, the DGN+emb variant, which combines protein embeddings with the graph
structure, is able to improve in the MCC metric by 23% over the DeepSets+emb variant.
This result indicates that, even when transitioning to a more challenging task, using the
graph structure together with informative node embeddings allows the resulting model
to generalize, and makes it applicable to perform predictions on proteins whose behav-
ior cannot be studied at the BP level.

UC3: Unknown subgraph. In our last use case, we test whether the models are still
able to generalize to novel PPIN subgraphs. The results of this experiment are reported
in Table 3. As mentioned in Sect. 2.3, this is the most challenging scenario, which
requires the models to be able to generalize to possibly unseen nodes and topologies. In
this case, DeepSets variants, which do not exploit the graph structure, are unable to gen-
eralize even with protein embeddings. In fact, they achieve an MCC close to 0 or display
high variance across the test folds (in particular the DeepSets+emb variant). In contrast,
even in this challenging setup, the structure-aware DGN variants are able to generalize
to unseen topologies to some extent: in particular, the DGN+emb (resp. DGN) improves
the MCC metric by up to 2.7x (resp. 2.2x) with respect to the DeepSets+emb variant.

Several insights can be drawn from these results. First of all, the fact that in this chal-
lenging case DeepSets+emb is unable to generalize, while the DGN variants show better
performances, suggests that the graph structure contains crucial information for gener-
alization, and that DGN variants are able to exploit it. Moreover, on the basis of the poor

Table 2  Average test scores (± standard deviation) obtained by the different models in the protein
hold out use case (UC2). The suffix +emb indicates that protein sequence embeddings were
concatenated to the I/O features. Best results are boldfaced 

Model MCC F1 ACC​ AUROC

Null .000±.000 .000±.000 .680±.024 .500±.000

DeepSets .021±.036 .218±.200 .572±.169 .560±.142

DeepSets+emb .415±.031 .605±.038 .741±.013 .783±.033

DGN .404±.077 .604±.043 .728±.052 .791±.038

DGN+emb .512±.040 .667±.032 .788±.019 .844±.025

Table 3  Average test scores (± standard deviation) obtained by the different models in the
pathway hold out use case (UC3). The suffix +emb indicates that protein sequence embeddings
were concatenated to the I/O features. Best results are boldfaced 

Model MCC F1 ACC​ AUROC

Null .000±.000 .000±.000 .678±.014 .500±.000

DeepSets .048±.037 .259±.169 .565±.174 .634±.037

DeepSets+emb .104±.094 .320±.186 .637±.047 .554±.087

DGN .230±.074 .528±.029 .581±.098 .631±.086

DGN+emb .277±.058 .515±.040 .682±.030 .657±.041

Page 22 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124

performances of DeepSets+emb in this use case, we can conjecture why it performed
reasonably in UC1 and UC2, where only input/output pairs and individual proteins,
respectively, were held out from the training set. Our intuition is that in those cases
DeepSets learns the correlation between the sensitivity label and the group of proteins,
so that when either a new input/output pair for the same group or the same group with a
new protein are considered, the learned correlation can be exploited. However, learning
this correlation alone is not enough when, as in UC3, the data samples come from differ-
ent BPs than those used during training. Indeed, different BPs include (mostly) different
groups of proteins, making the correlation learned by DeepSets useless. In contrast, the
proposed DGN learns useful signals from the graph structure, which allows it to gen-
eralize even in more challenging use cases, and exploits the protein embeddings as a
means to distinguish among the different proteins. Indeed, as we will show in Sect. 3.2.1,
the DGN is able to achieve similar levels of generalization in all use cases even when
using orthogonal (i.e., one-hot) protein identifiers instead of protein embeddings.

Finally, it is worth remarking that the generalization signals shown by DGN are par-
ticularly relevant by considering the small coverage of our dataset compared to the
entire interactome. As discussed in Sect. 3.1, our dataset includes only 1.14% of the pro-
teins and 0.14% of the interactions in BioGRID. Hence, the whole interactome very likely
contains a large variety of topologies not included in the dataset and on which it was not
possible to train the DGN. We anticipate that performances are likely to increase further
once a larger coverage of the interactome will be obtained, thus increasing the represen-
tation of different topologies in the dataset.

Performances with one‑hot

In this additional experiment, we trained the DGN model by replacing the protein
embeddings with one-hot encoded identifiers. This test has been motivated by the
improvements we obtained by adding the protein embeddings as a feature. In particu-
lar, we wanted to investigate whether the model benefited from using the structural
information encoded by the embeddings or it used them as protein identifiers. Thus, we
resorted to one-hot encodings, which are simple identifiers that do not contain struc-
tural information. As reported in Table 4, the performances are always on par with the
ones obtained with the protein embeddings. Furthermore, we observed a faster training
convergence (in terms of number of epochs), which suggests that the one-hot features
bring information that is easier for the model to learn from. This outcome indicates that

Table 4  Average text scores (± standard deviation) of DeepSets and DGN variants when using one-
hot encodings as protein identifiers

Model UC MCC F1 ACC​ AUROC

DeepSets 1 .498±.009 .661±.008 .778±.007 .834±.003

DGN 1 .764±.008 .842±.005 .896±.004 .952±.001

DeepSets 2 .427±.032 .595±.047 .759±.015 .794±.026

DGN 2 .543±.043 .690±.039 .801±.018 .851±.014

DeepSets 3 .146±.076 .284±.107 .677±.028 .622±.042

DGN 3 .253±.058 .486±.047 .677±.027 .651±.049

Page 23 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124 	

the model mostly needs to distinguish proteins from each other to obtain high perfor-
mance. Therefore, we conclude that the largest impact on the performances is brought
forth by the way the subgraphs are “wired”, i.e., by their topology, which the proposed
DGN could exploit successfully.

Besides these considerations, the one-hot features serve as a probing tool rather than
a modeling solution as they are not generalizable to new proteins. In fact, the one-hot
vector can only encode as many proteins as known at training time, and any unknown
protein at test time would require non-trivial adjustments.

Error analysis

To complement the evaluation experiments, we conducted an analysis to uncover pat-
terns in misclassified samples. This analysis serves the purpose of understanding what
is the contribution of different graph topological features to the sensitivity predictions.
To achieve this objective, we stratified the performance metrics with respect to four dif-
ferent characteristics of the input graphs: number of nodes, number of edges, average
clustering coefficient, length of the shortest path from the input protein to the output
protein, and backward (following the graph connectivity). In this section, we pick the
MCC measure for the discussion, but the observations hold for all the other perfor-
mance measures adopted in this study.

We identified a general trend that holds regardless of the UC or characteristics under
study: predictions are more accurate with moderate to high clustering coefficient (CC).
This is expected, since dynamical properties are typically inferable on graphs that exhibit
some complex structure [32], so it is harder for the model to make accurate predictions
at the two edges of the connectivity spectrum, i.e., when the CC is close to 1 (strongly
connected graph) or to 0 (weakly connected graph). Figures 7a–c show that perfor-
mances are lower for graphs with a CC that tends to 0, and decreases slightly when
reaching 1. When using protein embeddings, this trend gets smoothed for large CC,
because even when the graph is fully connected the model can discern different pro-
teins, hence distinguishing two graphs having an identical skeleton. For UC3 (Fig. 7c),
MCC score shows a high variance between folds for lower MCC, but the trend can be
observed looking at the shaded area representing the standard deviation, which gets
shrunk for medium to high CC values.

Concerning the distance from the input to the output nodes, we found that perfor-
mances correlate negatively in both directions, meaning that F1 decreases as the input–
output distance increases. This tendency, shown visually in Figs. 7(d–f), holds across the
different use cases and it is slightly accentuated when the model uses only the I/O node
features. Note that a distance of 4 in a PPIN is close to the network diameter, so it can
be considered “long” in this context. The model performances up to this distance are
consistently above the baseline, so we can conclude that the DGN is able to learn long-
distance relationships in PPINs.

As regards graph size, we found that performances with respect to the number of
nodes (Figs. 7(g–i) follow trends similar with the I/O distance, as larger graphs will have
more distant I/O pairs. Additionally, we can observe worse performances with smaller
graphs, which are likely to have trivial structure. A similar behavior can be observed
with respect to the number of edges (Figs. 7j–l), though here we can notice a much wider

Page 24 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124

standard deviation, especially at the extremes of the curves for UC1 and UC2, symptom
that the number of edge has not a direct impact on performances.

Case study and application scenarios
In this section, we provide an example of how our designed pipeline can be used to
retrieve relevant influences among proteins in a biological network. PPINs are often
studied in the context of specific diseases or biological processes, focusing on interac-
tions directly linked to known molecular mechanisms. Our methodology, however, is
designed to embed general knowledge about the dynamic behavior of these networks
and to exploit recurrent interaction patterns to highlight potential regulatory influences
that may not yet be explicitly annotated in BP databases.

3CU2CU1CU

C
C

(a) (b) (c)

D
is
ta

n
ce

(d) (e) (f)

N
od

es

(g) (h) (i)

E
d
ge

s

(j) (k) (l)

Fig. 7  MCC scores of the proposed DGN model stratified by various features (distance from input to output
protein, CC, number of nodes, and number of edges) for the three use cases (UC1, UC2, UC3). Blue points or
lines represent performances using only I/O features, while orange ones add protein embeddings as node
features. Shaded areas indicate the standard deviation across observations

Page 25 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124 	

To illustrate the pipeline’s application, we consider a case study related to type 2 dia-
betes (T2D). In the study by Son et al. [71], the authors pointed out that BACH2 plays a
critical role in T2D-associated β-cell failure, showing that its inhibition can reverse the
disease phenotype in experimental models. Their analysis was based on expression data,
using single-cell transcriptomics and regulatory network inference to identify BACH2 as
a key regulator of the insulin (INS) and glucagon (GCG) proteins, along with the AFF3
and CUX2 genes. We take their analysis as reference knowledge to verify the model’s
predictions, as it is based on single gene perturbation.

Our approach relies purely on network topology, making no use of expression data or
regulatory activity measurements. The goal of this example is to predict INS and GCG
dependence on some candidate regulators (BACH2, AFF3, CUX). To do so, we rely
solely on the structure of plausible PPINs involving the target proteins, ignoring gene
expression derived knowledge.

To construct the analysis, we employ the pipeline detailed in Fig. 4. The PPIN sub-
graphs were constructed as follows. We queried Reactome [7] for BPs containing the
targets, filtering out super-pathways. The motivation behind querying Reactome instead
of BioModels is twofold: on the one hand, Reactome contains a wider range of BPs; on
the other hand, these BPs are different from the ones used to train the DGN. For each
proteins set in the BPs, we retrieved the interaction network from BioGRID, similarly
to what has been done for the DyPPIN extraction (see Sect. 2.1). The regulators were
not included in any BP, while in the interactome they were just one or two hops away
from the BPs proteins. Therefore, we added them in the PPIN subgraphs along with
the proteins connecting them. Selected BPs were R-HSA-9768919 (NPAS4 regulates
expression of target genes), R-HSA-210745 (Regulation of gene expression in beta cells),
R-HSA-422356 (Regulation of insulin secretion), R-HSA-264876 (Insulin processing),
R-HSA-163359 (Glucagon signaling in metabolic regulation), R-HSA-381771 (Synthesis,
secretion, and inactivation of Glucagon-like Peptide-1), R-HSA-420092 (Glucagon-type
ligand receptors). We predicted sensitivity for all possible input–output pairs (6531) in
the PPINs, using the DGN variant trained without protein embeddings, as they were not
available for the three regulators.

In Fig. 8, we report the predicted sensitivity of INS and GCG to the regulators. The
scores are obtained by averaging the output of the sigmoidal readout units from the four

Fig. 8  Predicted sensitivities of insulin (INS) and glucagon (GCG) with respect to the BACH2, AFF3 and CUX2
genes. Values represent the output of the readout sigmoidal head, without thresholding, averaged across the
4 models trained for UC1 without protein embeddings, and normalized by the highest prediction over all the
input/output pairs in the BP

Page 26 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124

models trained over the 4 different folds. BACH2 has the highest score in three out of
seven BPs for INS and in 5 out of 7 for GCG, suggesting that it has a relevant role in the
regulatory landscape of pancreatic hormones. We remark that this result was obtained
without explicitly incorporating prior knowledge about the role of BACH2 in T2D or
any expression data, demonstrating that our pipeline can infer relevant interactions
based exclusively on the structure of the interaction network.

Although this initial implementation does not incorporate additional BP information,
we believe that its generality enables numerous extensions. Co-expression magnitudes
could be integrated as edge weights in the PPIN, refining the model’s ability to infer
regulatory influences. Similarly, BP-specific features could be embedded in the graph
representation to enhance sensitivity predictions. Another promising direction is the
comparison of predictions across different network variants, such as control and patient-
specific interaction networks, to uncover the effects of gene expression alterations.

Beyond disease modeling, our method could support drug target identification.
Since it highlights functionally relevant proteins based purely on network topology and
dynamics, it can identify potential targets even when they are distant in curated interac-
tion databases. This capability is particularly relevant for diseases where well-character-
ized molecular mechanisms are lacking or where novel regulatory influences have yet
to be mapped. Additionally, the model’s ability to infer indirect regulatory effects could
help to reveal previously unrecognized intervention points, offering new directions for
therapeutic development.

In drug repurposing, our approach could enable fast and systematic screening of
potential alternative targets for approved drugs. By leveraging the model’s sensitivity
predictions, researchers could prioritize proteins that, while not initially associated with
a drug’s mechanism of action, may still exert a significant regulatory influence in dis-
ease-related networks. This could be especially useful for identifying secondary or com-
pensatory BPs that become relevant in drug-resistant conditions, or for expanding the
therapeutic scope of existing compounds.

Finally, in a personalized medicine scenario, patient-derived networks could be rapidly
constructed and analyzed, enabling individualized assessments of regulatory dynamics.
Here, the model’s predictions could be integrated as an additional step in BP enrichment
analyses performed in differential expression studies, improving the interpretability
of functional interactions in PPINs. By incorporating patient-specific network modi-
fications, our approach could provide insights into how individual genetic variations
or mutations influence disease mechanisms, potentially guiding tailored therapeutic
interventions.

Conclusions
In this work, we have presented a DGN-based framework to infer sensitivity at the
PPIN level, by exploiting information obtained at the BP level. This was achieved by first
constructing a novel dataset of BPs annotated with sensitivity values obtained through
simulation ( DyBP ), and then by explicitly transferring this information to the BioGRID
PPIN, ultimately producing the DyPPIN dataset. Importantly, the graph nodes in both
datasets are annotated with public protein identifiers, which makes them readily usable
by existing biochemical pipelines. Furthermore, the information in these datasets can

Page 27 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124 	

also be used to provide standard annotations for protein pairs for classic PPI tasks. Both
datasets are released for public use.

The DyPPIN dataset was used to train a DGN model and predict the sensitivity of
pairs of proteins from BioGRID subgraphs by exploiting the graph topology, i.e., by lev-
eraging the way two proteins interact between themselves and among nearby proteins
within the PPIN. We robustly assessed the performance of the proposed approach across
different use cases and analyzed how the predictive performance vary in relation to the
graphs’ characteristics. The results demonstrate that the PPIN topology is a major com-
ponent of the needed signal to infer sensitivity. Furthermore, we showed that model per-
formances can be further enhanced by adding additional sequence information in the
form of protein embeddings. This latter point in particular opens up to the application of
our methodology to contextualized PPINs, for example those including node-wise gene
expression data, to improve performance on specific biological tasks by leveraging spe-
cific additional contextual knowledge.

The main issues of our model are the prediction for protein pairs that are far away in
the PPIN, and the generalization capabilities on completely unknown PPIN subgraphs.
As regards the former, it has been mitigated by employing a DGN variant that is aware
of directionality, but efforts should be put in constructing a DGN architecture that bet-
ter deals with dense and short-diameter graphs. As regards the latter, the generalization
capabilities could be improved by extending the training data with a wider range of BPs;
this would require the retrieval of pathways from other repositories, like KEGG [6] or
Reactome [7], and the development of strategies to compute dynamical properties over
their pathways, which cannot be done through ODEs simulation.

Having such a powerful tool can be of great help in many real-world applications.
For example, in a drug repurposing scenario practitioners often need to screen a large
amount, possibly any, protein to identify potential influences that could lead to new
therapeutic uses for existing drugs. The proposed method allows for the selection of the
set of proteins targeted by a drug and the prediction of other potential targets through
the trained DGN. This is a significantly more rapid process than that of running numeri-
cal simulations over BP, with the time taken to perform a single input/output pair pre-
diction being approximately 10−3 seconds on average. In comparison, the time taken for
a simulation is at least four orders of magnitude larger [40]. We recognize that the need
to select a set of proteins instead of operating on the whole PPIN could be a limitation
in some use cases where there is no clue about the proteins set that need to be inves-
tigated. Future work should focus on learning and predicting dynamical properties on
entire interactomes, but this opens new challenges because we need a way to model the
dynamics of multiple pathways on a single graph.

Several directions can be taken in future studies. Although this study only concerns
sensitivity with respect to the perturbation of an input concentration, it could be applied
to analyze sensitivity with respect to the perturbation of other parameters (e.g., reaction
rates). Along this line, the remark that the presented approach is general and could be
applied seamlessly to the prediction of other dynamical properties (e.g., robustness or
monotonicity, as done by Fontanesi et al. [40]). Also, it would be interesting to extend
the framework to other biological networks or hybrid networks such as drug-target
networks. Lastly, the pipeline could be specialized by adding complex node and edge

Page 28 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124

features to encode post-translational modifications or regulations. This would enable to
specify more complex relationships than the BP-PPIN mapping considered in this study.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​025-​06140-1.

Supplementary material 1

Acknowledgements
We would like to thank the University of Pisa Data Center for maintaining the necessary hardware resources for this
project.

Author contributions
AM and PM designed the study. AD and PM collected the data, performed the simulations, and prepared the datasets.
AD performed the machine learning experiments and wrote the accompanying code. All authors analyzed the experi-
mental results. All authors participated in preparing the initial draft and final version of this work.

Funding
This work was supported by PNRR-M4 C2-Investimento 1.3, Partenariato Esteso [PE00000013], “FAIR-Future Artificial
Intelligence Research”-Spoke 1 “Human-centered AI”; and PNRR-M4 C2-Investimento 1.5, Ecosistema dell’Innovazione
[ECS00000017], “THE-Tuscany Health Ecosystem”-CUP [I53 C22000780001]-Spoke 6 “Precision medicine & personalized
healthcare”, both funded by the European Commission under the NextGeneration EU programme. Moreover, this work
was partly supported by “Hub multidisciplinare e interregionale di ricerca e sperimentazione clinica per il contrasto alle
pandemie e all’antibioticoresistenza (PAN-HUB)” funded by the Italian Ministry of Health (POS 2014-2020, project ID:
T4-AN-07, CUP: I53 C22001300001).

Availability of data and materials
The DyBP and DyPPIN datasets in readable format are available as open data via the Zenodo repository: https://​doi.​org/​
10.​5281/​zenodo.​14535​418. The code for training the machine learning models and making predictions is available via
GitHub: https://​github.​com/​aless​andro​dipal​ma/​sensi​tivity_​ppin_​dgn. The code repository also contains a command line
tool that allows to predict the sensitivity of any BioGRID PPIN subgraph using the trained model checkpoints. The data
processed for the training and prediction, along with the DGN model checkpoints to perform the prediction via the sup-
plied code are available at https://​doi.​org/​10.​5281/​zenodo.​14535​760.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no Conflict of interest.

Received: 15 January 2025 Accepted: 10 April 2025

References
	1.	 Bajpai AK, Davuluri S, Tiwary K, Narayanan S, Oguru S, Basavaraju K, Dayalan D, Thirumurugan K, Acharya KK. System-

atic comparison of the protein-protein interaction databases from a user’s perspective. J Biomed Inform. 2020;103:
103380. https://​doi.​org/​10.​1016/j.​jbi.​2020.​103380.

	2.	 Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable AL, Fang T, Doncheva NT, Pyysalo S, Bork P,
Jensen LJ, Mering C. The STRING database in 2023: protein-protein association networks and functional enrichment
analyses for any sequenced genome of interest. Nucl Acids Res. 2023;51:638–46. https://​doi.​org/​10.​1002/​pro.​3978.

	3.	 Oughtred R, Rust J, Chang C, Breitkreutz B-J, Stark C, Willems A, Boucher L, Leung G, Kolas N, Zhang F, Dolma S,
Coulombe-Huntington J, Chatr-Aryamontri A, Dolinski K, Tyers M. The BioGRID database: a comprehensive biomedi-
cal resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021;30:187–200. https://​doi.​org/​10.​
1002/​pro.​3978.

	4.	 Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G, Chen C, del-Toro
N, Duesbury M, Dumousseau M, Galeota E, Hinz U, Iannuccelli M, Jagannathan S, Jimenez R, Khadake J, Lagreid A,
Licata L, Lovering RC, Meldal B, Melidoni AN, Milagros M, Peluso D, Perfetto L, Porras P, Raghunath A, Ricard-Blum S,
Roechert B, Stutz A, Tognolli M, Roey K, Cesareni G, Hermjakob H,. The MIntAct project-IntAct as a common curation
platform for 11 molecular interaction databases. Nucl Acids Res. 2014;42:358–63. https://​doi.​org/​10.​1093/​nar/​gkt11​
15.

https://doi.org/10.1186/s12859-025-06140-1
https://doi.org/10.5281/zenodo.14535418
https://doi.org/10.5281/zenodo.14535418
https://github.com/alessandrodipalma/sensitivity_ppin_dgn
https://doi.org/10.5281/zenodo.14535760
https://doi.org/10.1016/j.jbi.2020.103380
https://doi.org/10.1002/pro.3978
https://doi.org/10.1002/pro.3978
https://doi.org/10.1002/pro.3978
https://doi.org/10.1093/nar/gkt1115
https://doi.org/10.1093/nar/gkt1115

Page 29 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124 	

	5.	 The UniProt Consortium: UniProt. The universal protein knowledgebase in 2023. Nucl Acids Res. 2023;51:523–31.
https://​doi.​org/​10.​1093/​nar/​gkac1​052.

	6.	 Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein anno-
tation. Nucl Acids Res. 2016;44:457–62. https://​doi.​org/​10.​1093/​nar/​gkv10​70.

	7.	 Milacic M, Beavers D, Conley P, Gong C, Gillespie M, Griss J, Haw R, Jassal B, Matthews L, May B, Petryszak R, Rague-
neau E, Rothfels K, Sevilla C, Shamovsky V, Stephan R, Tiwari K, Varusai T, Weiser J, Wright A, Wu G, Stein L, Hermjakob
H, D’Eustachio P. The reactome pathway knowledgebase 2024. Nucl Acids Res. 2024;52:672–8. https://​doi.​org/​10.​
1093/​nar/​gkad1​025.

	8.	 Malik-Sheriff RS, Glont M, Nguyen TVN, Tiwari K, Roberts MG, Xavier A, Vu MT, Men J, Maire M, Kananathan S,
Fairbanks EL, Meyer JP, Arankalle C, Varusai TM, Knight-Schrijver V, Li L, Dueñas-Roca C, Dass G, Keating SM, Park YM,
Buso N, Rodriguez N, Hucka M, Hermjakob H. BioModels-15 years of sharing computational models in life science.
Nucl Acids Res. 2020;48:407–15. https://​doi.​org/​10.​1093/​nar/​gkz10​55.

	9.	 Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem. 1977;81(25):2340–61. https://​
doi.​org/​10.​1021/​j1005​40a008.

	10.	 Bacciu D, Errica F, Micheli A, Podda M. A gentle introduction to deep learning for graphs. Neural Netw.
2020;129:203–21. https://​doi.​org/​10.​1016/j.​neunet.​2020.​06.​006.

	11.	 Soleymani F, Paquet E, Viktor H, Michalowski W, Spinello D. Protein-protein interaction prediction with deep learn-
ing: a comprehensive review. Comput Struct Biotechnol J. 2022;20:5316–41. https://​doi.​org/​10.​1016/j.​csbj.​2022.​08.​
070.

	12.	 Zaki N, Singh H, Mohamed EA. Identifying protein complexes in protein-protein interaction data using graph convo-
lutional network. IEEE Access. 2021;9:123717–26. https://​doi.​org/​10.​1109/​ACCESS.​2021.​31108​45.

	13.	 Zhang Y, Xiang J, Tang L, Li J, Lu Q, Tian G, He B-S, Yang J. Identifying breast cancer-related genes based on a novel
computational framework involving KEGG pathways and PPI network modularity. Front Genet. 2021;12: 596794.
https://​doi.​org/​10.​3389/​fgene.​2021.​596794.

	14.	 Zhao T, Hu Y, Valsdottir LR, Zang T, Peng J. Identifying drug-target interactions based on graph convolutional net-
work and deep neural network. Brief Bioinform. 2021;22(2):2141–50. https://​doi.​org/​10.​1093/​bib/​bbaa0​44.

	15.	 Ding Z, Kihara D. Computational methods for predicting protein-protein interactions using various protein features.
Curr Protoc Protein Sci. 2018;93(1):62. https://​doi.​org/​10.​1002/​cpps.​62.

	16.	 Baranwal M, Magner A, Saldinger J, Turali-Emre ES, Elvati P, Kozarekar S, VanEpps JS, Kotov NA, Violi A, Hero AO.
Struct2graph: a graph attention network for structure based predictions of protein-protein interactions. BMC Bioin-
form. 2022;23(1):370. https://​doi.​org/​10.​1186/​s12859-​022-​04910-9.

	17.	 Elnaggar A, Heinzinger M, Dallago C, Rihawi G, Wang Y, Jones L, Gibbs T, Feher T, Angerer C, Steinegger M, Bhowmik
D, Rost B. ProtTrans: Towards Cracking the Language of Life’s Code Through Self-Supervised Deep Learning and
High Performance Computing. arXiv. https://​doi.​org/​10.​48550/​arXiv.​2007.​06225.

	18.	 Kewalramani N, Emili A, Crovella M. State-of-the-art computational methods to predict protein-protein interactions
with high accuracy and coverage. Proteomics. 2023;23(21):2200292. https://​doi.​org/​10.​1002/​pmic.​20220​0292.

	19.	 Zewen Xiao Xiao Z, Yue Deng Deng Y. Graph embedding-based novel protein interaction prediction via higher-
order graph convolutional network. PloS One. 2020;15: e0238915.

	20.	 Palukuri MV, Patil RS, Marcotte EM. Molecular complex detection in protein interaction networks through reinforce-
ment learning. BMC Bioinform. 2023;24(1):306. https://​doi.​org/​10.​1186/​s12859-​023-​05425-7.

	21.	 Zhang D, Kabuka M. Multimodal deep representation learning for protein interaction identification and protein fam-
ily classification. BMC Bioinform. 2019;20:531. https://​doi.​org/​10.​1186/​s12859-​019-​3084-y.

	22.	 Zhang Q, Li J, Xie H, Xue H, Wang Y. A network-based pathway-expanding approach for pathway analysis. BMC
Bioinform. 2016;17(17):536. https://​doi.​org/​10.​1186/​s12859-​016-​1333-x.

	23.	 Le Novère N. Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet. 2015;16(3):146–58.
https://​doi.​org/​10.​1038/​nrg38​85.

	24.	 Cinaglia P. Network alignment and motif discovery in dynamic networks. Netw Model Anal Health Inform Bioinform.
2022;11(1):38. https://​doi.​org/​10.​1007/​s13721-​022-​00383-1.

	25.	 Zhang Y, Lin H, Yang Z, Wang J. Construction of dynamic probabilistic protein interaction networks for protein
complex identification. BMC Bioinform. 2016;17(1):186. https://​doi.​org/​10.​1186/​s12859-​016-​1054-1.

	26.	 Jing X, Zhou Y, Shi M. Dynamic graph neural network learning for temporal omics data prediction. IEEE Access.
2022;10:116241–52. https://​doi.​org/​10.​1109/​ACCESS.​2022.​32180​27.

	27.	 Costello Z, Martin HG. A machine learning approach to predict metabolic pathway dynamics from time-series
multiomics data. NPJ Syst Biol Appl. 2018;4(1):19.

	28.	 Chow K, Sarkar A, Elhesha R, Cinaglia P, Ay A, Kahveci T.: ANCA: Alignment-Based Network Construction Algorithm.
IEEE/ACM Transactions on Computational Biology and Bioinformatics 2021;18(2): 512–524 https://​doi.​org/​10.​1109/​
TCBB.​2019.​29236​20 . Conference Name: IEEE/ACM Transactions on Computational Biology and Bioinformatics.
Accessed 2025-03-15.

	29.	 Cinaglia P. PyMulSim: a method for computing node similarities between multilayer networks via graph isomor-
phism networks. BMC Bioinform. 2024;25(1):211. https://​doi.​org/​10.​1186/​s12859-​024-​05830-6.

	30.	 Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L. The large-scale organization of metabolic networks. Nature.
2000;407(6804):651–4. https://​doi.​org/​10.​1038/​35036​627. MAG ID: 2144885342.

	31.	 Kitano H. Systems biology: a brief overview. Science. 2002;295(5560):1662–4. https://​doi.​org/​10.​1126/​scien​ce.​10694​
92.

	32.	 Santolini M, Barabási A-L. Predicting perturbation patterns from the topology of biological networks. Proc Natl Acad
Sci. 2018;115(27):6375–83. https://​doi.​org/​10.​1073/​pnas.​17205​89115.

	33.	 Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Natu Rev
Genet. 2011. https://​doi.​org/​10.​1038/​nrg29​18.

	34.	 Hucka M, Finney A, Sauro HM, Bolouri H, Doyle J, Kitano H, Arkin AP, Bornstein B, Bray D, Cornish-Bowden A, Cuellar
AA, Dronov S, Gilles ED, Gilles ED, Ginkel M, Gor V, Goryanin I, Hedley WJ, Hodgman TC, Hofmeyr J-HSJH, Hofmeyr
Hunter P, Juty N, Kasberger JL, Kremling A, Ursula Kummer Kummer U, Novère Ursula Kummer Ursula Kummer Le, N,

https://doi.org/10.1093/nar/gkac1052
https://doi.org/10.1093/nar/gkv1070
https://doi.org/10.1093/nar/gkad1025
https://doi.org/10.1093/nar/gkad1025
https://doi.org/10.1093/nar/gkz1055
https://doi.org/10.1021/j100540a008
https://doi.org/10.1021/j100540a008
https://doi.org/10.1016/j.neunet.2020.06.006
https://doi.org/10.1016/j.csbj.2022.08.070
https://doi.org/10.1016/j.csbj.2022.08.070
https://doi.org/10.1109/ACCESS.2021.3110845
https://doi.org/10.3389/fgene.2021.596794
https://doi.org/10.1093/bib/bbaa044
https://doi.org/10.1002/cpps.62
https://doi.org/10.1186/s12859-022-04910-9
https://doi.org/10.48550/arXiv.2007.06225
https://doi.org/10.1002/pmic.202200292
https://doi.org/10.1186/s12859-023-05425-7
https://doi.org/10.1186/s12859-019-3084-y
https://doi.org/10.1186/s12859-016-1333-x
https://doi.org/10.1038/nrg3885
https://doi.org/10.1007/s13721-022-00383-1
https://doi.org/10.1186/s12859-016-1054-1
https://doi.org/10.1109/ACCESS.2022.3218027
https://doi.org/10.1109/TCBB.2019.2923620
https://doi.org/10.1109/TCBB.2019.2923620
https://doi.org/10.1186/s12859-024-05830-6
https://doi.org/10.1038/35036627
https://doi.org/10.1126/science.1069492
https://doi.org/10.1126/science.1069492
https://doi.org/10.1073/pnas.1720589115
https://doi.org/10.1038/nrg2918

Page 30 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124

Loew LM, Lucio D, Mendes P, Minch E, Mjolsness E, Nakayama Y, Nelson MR, Nielsen PMF, Sakurada T, Sakurada TTS,
Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Koichi Takahashi Takahashi K, Takahashi K, Tomita M, Wagner
J, Wang J,. The systems biology markup language (SBML): a medium for representation and exchange of biochemi-
cal network models. Bioinformatics. 2023;19(4):524–31. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btg015.

	35.	 Clerx M, Cooling MT, Cooper J, Garny A, Moyle K, Nickerson DP, Nielsen PMF, Sorby H. CellML 2.0. J Integr Bioinform.
2020. https://​doi.​org/​10.​1515/​jib-​2020-​0021.

	36.	 Beal J, Cox RS, Grünberg R, McLaughlin J, Nguyen T, Bartley B, Bissell M, Choi K, Clancy K, Macklin C, Madsen C, Misirli
G, Oberortner E, Pocock M, Roehner N, Samineni M, Zhang M, Zhang Z, Zundel Z, Gennari JH, Myers C, Sauro H,
Wipat A. Synthetic biology open language (SBOL) version 210. J Integr Bioinform. 2016;13(3):30–132. https://​doi.​
org/​10.​1515/​jib-​2016-​291.

	37.	 Bove P, Micheli A, Milazzo P, Podda M (2020) Prediction of dynamical properties of biochemical pathways with graph
neural networks:. In: Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems
and Technologies, pp. 32–43. SCITEPRESS - Science and Technology Publications. https://​doi.​org/​10.​5220/​00089​
64700​320043.

	38.	 Podda M, Bacciu D, Micheli A, Milazzo P (2020) Biochemical pathway robustness prediction with graph neural net-
works. In: Proceedings of the 28th European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN),121–126.

	39.	 Podda M, Bove P, Micheli A, Milazzo P (2021) Classification of biochemical pathway robustness with neural networks
for graphs. In: Ye, X., Soares, F., De Maria, E., Gómez Vilda, P., Cabitza, F., Fred, A., Gamboa, H. (eds.) Biomedical Engi-
neering Systems and Technologies. Communications in Computer and Information Science, pp. 215–239. Springer.
https://​doi.​org/​10.​1007/​978-3-​030-​72379-8_​11.

	40.	 Fontanesi M, Micheli A, Milazzo P, Podda M. Exploiting the structure of biochemical pathways to investigate dynami-
cal properties with neural networks for graphs. Bioinformatics. 2023;39(11):678. https://​doi.​org/​10.​1093/​bioin​forma​
tics/​btad6​78.

	41.	 Peterson JL. Petri nets. ACM Comput Surv (CSUR). 1977;9:223–52. https://​doi.​org/​10.​1145/​356698.​356702.
	42.	 Nasti L, Gori R, Milazzo P (2018) Formalizing a notion of concentration robustness for biochemical networks. In: Maz-

zara, M., Ober, I., Salaün, G. (eds.) Software Technologies: Applications and Foundations. Lecture Notes in Computer
Science, pp. 81–97. Springer. https://​doi.​org/​10.​1007/​978-3-​030-​04771-9_8.

	43.	 Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S(2008) Global Sensitivity
Analysis: the Primer. John Wiley & Sons, ???

	44.	 Morris MD. Factorial sampling plans for preliminary computational experiments. Qual Control Appl Stat.
1992;37(6):307–10.

	45.	 Campolongo F, Saltelli A, Cariboni J. From screening to quantitative sensitivity analysis. a unified approach. Comput
Phys Commun. 2011;182:978–88. https://​doi.​org/​10.​1016/j.​cpc.​2010.​12.​039.

	46.	 Burhenne S, Jacob D, Henze GP. Sampling based on sobol’ sequences for monte carlo techniques applied to build-
ing simulations. Build Simul. 2011;12:1816–23.

	47.	 Micheli A. Neural network for graphs: a contextual constructive approach. IEEE Trans Neural Netw. 2009;20(3):498–
511. https://​doi.​org/​10.​1109/​TNN.​2008.​20103​50.

	48.	 Ye Z, Kumar YJ, Sing GO, Song F, Wang J. A comprehensive survey of graph neural networks for knowledge graphs.
IEEE Access. 2022;10:75729–41. https://​doi.​org/​10.​1109/​ACCESS.​2022.​31917​84.

	49.	 Welsh C, Xu J, Smith L, König M, Choi K, Sauro HM (2022) libRoadRunner 2.0: A High-Performance SBML Simulation
and Analysis Library. arXiv. https://​doi.​org/​10.​48550/​arXiv.​2203.​01175.

	50.	 Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans R Soc A: Math
Phys Eng Sci. 2016;374(2065):20150202. https://​doi.​org/​10.​1098/​rsta.​2015.​0202.

	51.	 Morris C, Ritzert M, Fey M, Hamilton WL, Lenssen JE, Rattan G, Grohe M 2019 Weisfeiler and leman go neural: higher-
order graph neural networks. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and
Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence. AAAI’19/IAAI’19/EAAI’19 2019. https://​doi.​org/​10.​1609/​aaai.​v33i01.​33014​602.

	52.	 Rossi E, Charpentier B, Giovanni FD, Frasca F, Günnemann S, Bronstein MM 2024 Edge directionality improves learn-
ing on heterophilic graphs. In: Proceedings of the Second Learning on Graphs Conference, pp. 25–12527. PMLR.

	53.	 Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural net-
works from overfitting. J Mach Learn Res. 2014;151:1929.

	54.	 Park Y, Marcotte EM. Flaws in evaluation schemes for pair-input computational predictions. Nat Method.
2012;9:1134–6. https://​doi.​org/​10.​1038/​nmeth.​2259.

	55.	 Lannelongue L, Inouye M. Pitfalls of machine learning models for protein-protein interaction networks. Bioinformat-
ics. 2024;40:012. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btae0​12.

	56.	 Zhu J, Zhou Y, Ioannidis VN, Qian S, Ai W, Song X, Koutra D (2024) Pitfalls in link prediction with graph neural
networks: Understanding the impact of target-link inclusion & better practices. In: Proceedings of the 17th ACM
International Conference on Web Search and Data Mining, pp. 994–1002. https://​doi.​org/​10.​1145/​36168​55.​36357​86.

	57.	 Fawcett T. An introduction to roc analysis. Pattern Recognit Lett. 2006;27(8):861–74. https://​doi.​org/​10.​1016/j.​patrec.​
2005.​10.​010.

	58.	 Chicco D, Jurman G. The advantages of the matthews correlation coefficient (mcc) over f1 score and accuracy in
binary classification evaluation. BMC Genomics. 2020. https://​doi.​org/​10.​1186/​s12864-​019-​6413-7.

	59.	 Chicco D, Tötsch N, Jurman G. The matthews correlation coefficient (MCC) is more reliable than balanced accuracy,
bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Min. 2021;14:13.
https://​doi.​org/​10.​1186/​s13040-​021-​00244-z.

	60.	 Zaheer M, Kottur S, Ravanbakhsh S, Poczos B, Salakhutdinov RR, Smola AJ (2017) Deep sets. In: Advances in Neural
Information Processing Systems 30.

	61.	 Errica F, Bacciu D, Micheli A (2021) Graph mixture density networks. In: Proceedings of the 38th International Confer-
ence on Machine Learning, pp. 3025–3035. PMLR. ISSN: 2640-3498.

https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.1515/jib-2020-0021
https://doi.org/10.1515/jib-2016-291
https://doi.org/10.1515/jib-2016-291
https://doi.org/10.5220/0008964700320043
https://doi.org/10.5220/0008964700320043
https://doi.org/10.1007/978-3-030-72379-8_11
https://doi.org/10.1093/bioinformatics/btad678
https://doi.org/10.1093/bioinformatics/btad678
https://doi.org/10.1145/356698.356702
https://doi.org/10.1007/978-3-030-04771-9_8
https://doi.org/10.1016/j.cpc.2010.12.039
https://doi.org/10.1109/TNN.2008.2010350
https://doi.org/10.1109/ACCESS.2022.3191784
https://doi.org/10.48550/arXiv.2203.01175
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1038/nmeth.2259
https://doi.org/10.1093/bioinformatics/btae012
https://doi.org/10.1145/3616855.3635786
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s13040-021-00244-z

Page 31 of 31Dipalma et al. BMC Bioinformatics (2025) 26:124 	

	62.	 Kipf TN, Welling M (2017) Semi-Supervised Classification with Graph Convolutional Networks. arXiv. https://​doi.​org/​
10.​48550/​arXiv.​1609.​02907.

	63.	 Xu K, Hu W, Leskovec J, Jegelka S (2019) How Powerful are Graph Neural Networks? arXiv. https://​doi.​org/​10.​48550/​
arXiv.​1810.​00826.

	64.	 Kingma DP, Ba J (2017) Adam: A Method for Stochastic Optimization. arXiv. https://​doi.​org/​10.​48550/​arXiv.​1412.​
6980.

	65.	 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Köpf
A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: An Impera-
tive Style, High-Performance Deep Learning Library. arXiv. https://​doi.​org/​10.​48550/​arXiv.​1912.​01703.

	66.	 Falcon W (2019) The PyTorch Lightning team: PyTorch Lightning. https://​doi.​org/​10.​5281/​zenodo.​38289​35.
	67.	 Fey M, Lenssen JE (2019) Fast Graph Representation Learning with PyTorch Geometric. arXiv. https://​doi.​org/​10.​

48550/​arXiv.​1903.​02428.
	68.	 Liaw R, Liang E, Nishihara R, Moritz P, Gonzalez JE, Stoica I (2018) Tune: A Research Platform for Distributed Model

Selection and Training. arXiv. https://​doi.​org/​10.​48550/​arXiv.​1807.​05118.
	69.	 Biewald L (2020) Experiment Tracking with Weights and Biases. Software available from wandb.com 2020. https://​

www.​wandb.​com/.
	70.	 Fagiolo G (2007) Clustering in complex directed networks 76(2):26107 https://​doi.​org/​10.​1103/​PhysR​evE.​76.​026107.
	71.	 Son J, Ding H, Farb TB, Efanov AM, Sun J, Gore JL, Syed SK, Lei Z, Wang Q, Accili D, Califano A. BACH2 inhibition

reverses β cell failure in type 2 diabetes models. J Clin Investig. 2021. https://​doi.​org/​10.​1172/​JCI15​3876.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.48550/arXiv.1810.00826
https://doi.org/10.48550/arXiv.1810.00826
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.48550/arXiv.1903.02428
https://doi.org/10.48550/arXiv.1903.02428
https://doi.org/10.48550/arXiv.1807.05118
https://www.wandb.com/
https://www.wandb.com/
https://doi.org/10.1103/PhysRevE.76.026107
https://doi.org/10.1172/JCI153876

	Sensitivity analysis on protein-protein interaction networks through deep graph networks
	Abstract
	Background:
	Results:
	Conclusion:

	Introduction
	Related works
	Temporal data and PPINs

	Background
	Dynamical properties of BPs and sensitivity analysis
	Deep graph networks for graph classification

	Methods
	Dataset creation
	BP simulations and sensitivity computation
	Mapping of BP information onto the BioGRID PPIN
	Adding node features to subgraphs

	DGN architecture
	Training and inference

	Experimental design and performance evaluation
	Performance metrics
	Model selection and evaluation

	Results and discussion
	Dataset analysis
	Model performances
	Performances with one-hot

	Error analysis

	Case study and application scenarios
	Conclusions
	Acknowledgements
	References

